Historical Vignette

Hypophosphatasia: Molecular Diagnosis of Rathbun’s Original Case

STEVEN MUMM,1,2 JONATHAN JONES,1 PATRICK FINNEGAN,1 and MICHAEL P. WHYTE1,2

ABSTRACT

In 1948, Dr. John Campbell Rathbun characterized the disorder “hypophosphatasia” when he reported paradoxically low levels of alkaline phosphatase (ALP) activity in blood and in several tissues from an infant who died with rickets and epilepsy, which seemed to reflect “a new developmental anomaly.” Hypophosphatasia is now recognized to be an inborn error of metabolism featuring deficient activity of the tissue-nonspecific isoenzyme of ALP (TNSALP) caused by deactivating mutations in TNSALP. Here, we show, more than 50 years after Rathbun’s case report, that analysis of the parental DNA indicates compound heterozygosity involving two missense mutations (G340A and A881C) in TNSALP caused the death of Rathbun’s patient. (J Bone Miner Res 2001;16:1724–1727)

Key words: alkaline phosphatase, rickets, osteoblast, inborn error of metabolism, mutation

INTRODUCTION

In 1946, Dr. John Campbell Rathbun (Fig. 1), then a fellow in pediatrics at The Hospital for Sick Children, Toronto, Canada, was referred a 3-week-old boy who seemed well at birth but then lost weight, developed epileptic seizures and, when held, cried as though in pain. Radiographs showed severe osteopenia, fractures, and metaphyseal irregularities, but serum calcium and inorganic phosphate levels were repeatedly normal or elevated, and serum alkaline phosphatase (ALP) activity was paradoxically low. Despite a variety of attempted treatments, including vitamin D supplementation, his patient died at 2 months of age shortly after a series of tonic seizures. Several tissues obtained at autopsy, including specimens of bone that revealed histopathologic changes consistent with rickets, also were deficient in ALP activity. Accordingly, in 1948 Rathbun reported this new “developmental anomaly” as “hypophosphatasia” (Fig. 2). (1)

We now appreciate that Rathbun’s publication represents the discovery of hypophosphatasia. (2) More than one-half of a century later, approximately 300 cases of this inborn error of metabolism have been reported. (2) Rathbun’s patient is an example of the infantile form of the disease with an incidence of approximately 1 per 100,000 live births and a lethal outcome in approximately 50% of such patients. (1,2) In hypophosphatasia, defective skeletal mineralization seems to reflect endogenous accumulation of inorganic pyrophosphate (PPi), an inhibitor of skeletal mineralization. (3) Epilepsy occurs in severely affected infants possibly because of disturbed vitamin B6 metabolism. (1,4,5) There is no established medical treatment, (2) but preliminary reports indicate that marrow cell transplantation rescued one severely affected girl (6) and seemed to ameliorate the skeletal disease

1Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital Research Institute, St. Louis, Missouri, USA.
2Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, Missouri, USA.
of tissue-nonspecific isoenzyme of ALP (TNSALP) knock-out mice\(^7\) that recapitulate the infantile form of hypophosphatasia.\(^5\)

Despite a remarkable range of disease severity, all individuals with hypophosphatasia studied to date have had a mutation(s) in the gene that encodes TNSALP ("liver/bone/kidney ALP").\(^8,9\) No other gene or epigenetic factor has been implicated. Molecular studies have shown at least 65 distinctive deactivating TNSALP defects among hypophosphatasia patients worldwide.\(^8,9\)

Here, we report the molecular pathology of Rathbun’s case using DNA acquired from the elderly parents 50 years after their son succumbed to hypophosphatasia.

MATERIALS AND METHODS

In 1996, 50 years after the birth of her son, the mother of Rathbun’s patient wrote to us to learn what was known about hypophosphatasia and to find out if carrier detection was possible for her family. The half-century of progress was reviewed, and a unique opportunity was recognized. After obtaining informed written consent, whole blood was obtained from her and her husband to extract leukocyte DNA for analysis of their TNSALP alleles. Denaturing gradient gel electrophoresis (DGGE) is established in our laboratory to investigate the molecular pathology of hypophosphatasia.\(^10\)

Genomic DNA was isolated from lymphocytes using the Puregene kit (Gentra Systems, Inc., Minneapolis, MN, USA). Analysis of genomic DNA in leukocytes from both elderly individuals included polymerase chain reaction (PCR) amplification of all 11 coding exons of TNSALP, and DGGE was used to identify abnormalities.\(^10\) PCR products for exons containing mutations/polymorphisms were reamplified and sequenced using Big-Dye terminators on an ABI 377 sequencer (Applied Biosystems, Foster City, CA, USA).

RESULTS

In the mother, a missense mutation was identified in exon 5, a G → A change at nucleotide number 340 (G340A) causing an amino acid change (alanine → threonine) at position 97 (Ala97Thr; Fig. 3). This mutation has not been reported previously.\(^8,9,11–13\) In fact, in approximately 100 hypophosphatasia patients that we have screened thus far,
we have detected this point mutation in only one other individual who suffers from the adult form of hypophosphatasia. To show that this change was “disease-causing” and not a polymorphism, we looked for the G340A change in 84 individuals unaffected by hypophosphatasia, using an allele-specific oligonucleotide (ASO) assay. The G340A change was not detected in the 168 alleles and, therefore, was not a polymorphism. In fact, alanine at position 97 is conserved in human TNSALP, human placental ALP, and Escherichia coli ALP proteins, suggesting that this amino acid has a critical role in ALP function.

In the father, a missense mutation was detected in exon 9, an A → C change at nucleotide number 881 (A881C) causing an amino acid change (aspartic acid → alanine) at position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported causing an amino acid change (aspartic acid → alanine) at position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishing the first base of the start codon as base number one, the A881C mutation was previously called A1057C(12),(13)). The father also showed a common position 277 (Asp277Ala). This alteration has been reported in several cases of hypophosphatasia and may represent one of the most common mutations (because of a change in nomenclature, establishi

Address reprint requests to:
Michael P. Whyte, M.D.
Shriners Hospitals for Children
2001 South Lindbergh Boulevard
St. Louis, MO 63131, USA