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Abstract

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone miner-

alization and is highly variable in its clinical phenotype. The disease occurs due to various

loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phospha-

tase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for

the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a

pipeline of synergistic approaches including sequence-structure analysis, network model-

ing, elastic network models and atomistic simulations, we characterized allosteric signatures

and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of

molecular features computed for the ALPL mutations showed a significant difference

between the control, mild and severe HPP phenotypes. Molecular dynamics simulations

coupled with protein structure network analysis were employed to analyze the effect of sin-

gle-residue variation on conformational dynamics of TNSALP dimers, and the developed

machine learning model suggested that the topological network parameters could serve as

a robust indicator of severe mutations. The results indicated that the severity of disease-

associated mutations is often linked with mutation-induced modulation of allosteric commu-

nications in the protein. This study suggested that ALPL mutations associated with mild and

more severe HPPs can exert markedly distinct effects on the protein stability and long-range

network communications. By linking the disease phenotypes with dynamic and allosteric

molecular signatures, the proposed integrative computational approach enabled to charac-

terize and quantify the allosteric effects of ALPL mutations and role of allostery in the patho-

genesis of HPPs.
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Author summary

By focusing on Hypophosphatasia, a rare inherited disorder we performed a comprehen-

sive computational analysis of mutational effects on protein function in the encoded pro-

tein of Tissue Nonspecific Alkaline Phosphatase. This analysis demonstrated that

pathogenic mutations can often modulate long-range allosteric interactions and commu-

nications in the dynamic protein network and the mechanisms underlying severity of

mutational effects can be rationalized based on molecular principles of allostery. We have

also developed a machine learning-based method to classify different disease phenotypes,

and the interpretability of the classification model was addressed using the structural-

functional analysis of network topologically important mutations. The results of this study

revealed allosteric molecular signatures of severe mutations, suggesting that allosteric

models of protein dynamics and function can be useful in dissecting complex genotype-

phenotype relationships.

Introduction

Hypophosphatasia (HPP) is a rare autosomal dominant or recessive metabolic disorder that

constitutes a complex, multisystemic disease [1,2]. The clinical manifestation of this disease is

highly diverse and is often linked with the mutational landscape and the inheritance mecha-

nism [2]. From a prenatal lethal form with no skeletal mineralization to a mild form with late

adult onset, HPP can be classified into six subtypes including perinatal, infantile, prenatal

benign, childhood, adult and odonto [3]. In general, perinatal and infantile subtypes represent

severe forms of HPP, while childhood, adult, odonto, and prenatal benign subtypes constitute

mild phenotypes.[4] HPP is caused by loss-of-function mutations in the ALPL gene encoding

the Tissue Nonspecific Alkaline Phosphatase (TNSALP).[5] TNSALP is a membrane-bound

metalloenzyme, whose activity is reduced by various mutations in the ALPL gene, leading to

the increased inorganic pyrophosphate, which in turn causes different HPP phenotypes [6]. As

an enzyme replacement therapy, ENB-0040 is a bone-targeted, recombinant human TNSALP

that prevents the manifestations of HPP [7]. However, to date, there is no established treat-

ment for HPPs [8], due to the little knowledge about the relationship between mutations in the

gene responsible for HPPs and phenotypic variability.

The ALPL gene is localized on chromosome 1p36.1–34 and consists of 12 exons distributed

over 50 kb [9,10], ALPL mutation detection is important for recurrence risk assessment and

prenatal diagnosis [11]. To date, more than 400 ALPL gene mutations have been reported

worldwide and approximately 80% of these mutations are missense. Although HPP is caused

by homozygous, heterozygous, or compound heterozygous ALPL mutations [12], most of

these mutations cause changes in a single amino acid in TNSALP. Mutations in ALPL would

reduce the enzyme activity of TNSALP mutant proteins to a varying degree, with residual

activities often exhibiting different enzymatic properties from wild-type TNSALP. By measur-

ing the effects of amino acid changes on TNSALP dimer stability, the relationship between

ALPL missense variants and TNSALP enzymatic activity can be predicted [13]. Despite recent

progress, the correlation between these mutations and the six HPP subtypes is not well estab-

lished, and thus the molecular mechanisms underlying the genotypic-phenotypic relationships

of HPP remain unclear [14]. A more detailed molecular characterization of ALPL mutations

can help to better understand mechanisms driving the pathogenesis, and onset of HPP. In

addition, understanding and characterization of the molecular determinants of pathogenic

mutations may enhance a toolkit for inhibiting TNSALP and design of targeted therapies [15].
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TNSALP is a homodimeric protein that contains several known domains, including five

principal functional domains: catalytic site, calcium-binding site, crown domain, homodimer

interface, and N-terminal alpha helix [12]. The assignment of various mutations to the five

functional domains of the TNSALP structure model has contributed to the current under-

standing of the genotypic and phenotypic interrelationship of HPP [16]. For example, most of

the severe missense mutations were localized in crucial domains, such as the active site, the

vicinity of the active site, and the homodimer interface. The structural importance of the

crown domain has also been highlighted, with respect to the catalytic function of TNSALP

[17]. In addition, there is structural evidence to support the concept that these crucial domains

are also involved in the allosteric properties of TNSALP, since the catalytic activity depends on

its homodimeric configuration from which the dominant negative effect of some loss-of-func-

tion ALPL mutations is derived. Although mammalian alkaline phosphatases have been

known as allosteric enzymes for many years [18], the dynamics-driven allosteric signaling

pathways have yet to be investigated at an atomistic level. Therefore, the elucidation of the con-

formational dynamics and allosteric signatures of TNSALP caused by ALPL mutations would

provide greater insight into the genotype-phenotype relationship in HPP [19,20].

The catalytic efficiency[21] and potential pathogenicity of mutations [22,23] are deeply

interlinked with the molecular mechanisms and can be examined using evolutionary, struc-

tural and dynamics perspectives [24]. The disease-causing mutations frequently involve a dras-

tic change in amino acid physicochemical properties, such as charge, hydrophobicity, and

geometry, and are less surface exposed than polymorphic mutations [25]. In this study, we

employ an integrative computational strategy to explore and quantify the molecular effects of

ALPL mutations that combine structural analysis, biophysical simulations and modeling of

dynamic interaction networks. Structural modeling combined with network theory has been

widely exploited in studying protein topology, dynamics and allostery [26–28]. Dynamic net-

work modeling of conformational ensembles has been proven as an efficient approach to

describe structural and dynamic changes associated with mutational effects in complex protein

systems [29–32]. Central to these approaches is characterization of conformational protein

dynamics and mutation-induced changes in the protein equilibrium ensembles which is fun-

damental to understanding the physical basis of the effects of missense variants [33,34]. Elastic

network models (ENMs) are widely recognized as robust simplified models of protein topol-

ogy and dynamics [35,36] that have been successfully used to predict the effects of single-point

mutations on protein stability [37]. By incorporating dynamic descriptors based on ENM with

sequence- and structure-dependent properties, the prediction accuracy of the impact of vari-

ants on biological function has greatly increased [38]. Machine learning models that integrate

sequence, structure, and ensemble-based features have been developed to classify mutation

types [39–41]. Furthermore, biophysical simulations combined with structure-based modeling

of residue interaction networks have also been used to reveal the functional role of mutation

hotspots in molecular communication in some tumor suppressor proteins [42], regulatory

complexes including HSp90 [43], and SARS-CoV-2 spike Protein [44], and classify PTEN mis-

sense variants corresponding to cancer or autism spectrum disorder [45–47].

Our recent works have highlighted that biophysics-based and data-driven approaches,

including genomic analysis, coevolution and network-based modeling provide an array of

powerful tools to study disease mutations in genomic medicine and allosteric interactions [48–

51]. In this work, based on this concept, we propose an integrated computational approach for

the large-scale analysis of disease mutations. We collected diverse ALPL single-point mutations

associated with neutral, mild, and severe phenotypes from various scientific gene mutation

databases; the computational pipeline consisted of three steps (Fig 1). First, by performing

three levels of analysis, including conservation and coevolution analysis based on the sequence
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level, structural modeling, energetic analysis, protein structure network (PSN) modeling, and

ENM-based dynamics analysis, different molecular and network signatures were determined

and attributed to three types of mutations. Second, statistical analysis including creation of a

random forest model, was performed to test which molecular signatures can serve as robust

predictors for classifying the three kinds of mutations. Finally, through integration of long-

range perturbation dynamics and network-based approaches, we quantified the allosteric

potential of selected mutation residues. Our study characterizes the mutational landscape of

ALPL through modeling and analysis of molecular signatures and allosteric effects of muta-

tions [52], providing new insights into the genotype-phenotype interrelationship in HPP [53].

Materials and methods

Data collection of ALPL mutations

With the goal of classifying various ALPL variants according to different phenotypes,

242 single-point loss of function variants were selected in HPP patients with mild and severe

phenotypes and the control group from the ALPL gene mutation database (https://

alplmutationdatabase.jku.at, accessed on 11 January 2021), the Human Gene Mutation

Database (http://www.hgmd.cf.ac.uk/ac/index.php), the Locus Specific Mutation Databases

(http://www.hgmd.cf.ac.uk/docs/oth_mut.html), and literature in the PubMed database.

The collated data set of ALPL mutations associated with mild, severe HPP phenotypes and

putative functionally non-pathogenic variants, as well as their molecular signatures, are listed

in S1 Table.

Fig 1. The computational workflow. (A) Beginning with the collection of ALPL mutations associated with different HPP phenotypes and the computational

modeling of TNSALP protein structure, molecular signatures of mutational hotspots were calculated. In addition to normally used signatures, three levels of

parameters for describing mutations were analyzed: conservation and coevolution analysis at the sequence level, PSN-based network matrices at the structural

level, and ENM-related features at the dynamics level. (B) The classification and prediction of pathogenicity of ALPL mutations based on the statistical analysis

of molecular signatures and the construction of machine learning models. (C) Allosteric effect analysis of predicted mutations by single-residue perturbation,

molecular dynamics and long-range pathway analysis.

https://doi.org/10.1371/journal.pcbi.1010009.g001
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Sequence conservation and coevolution analyses

By using the Consurf server,[54] the conservation scale for each residue in the TNSALP pro-

tein was calculated (range from 1 through 9, where 1 denotes the node least conserved and 9

denotes the most conserved sites). The refined multiple sequence alignment (MSA) of the

TNSALP protein can also be retrieved from the Consurf server for the following up Shannon

information entropy S(i) and mutual information (MI) calculations. S(i) measures the variabil-

ity of specific sites of protein sequences, which is calculated as

SðiÞ ¼ �
P20

ai¼1
PðaiÞlogPðaiÞ ð1Þ

where P(ai) is the probability of occurrence of amino acid type in the ith column. S(i) varies in

the range 0�S(i)�3.0, and a lower S(i) implies higher evolutionary conservation. Similarly, MI
was applied as a measure of the degree of intra-molecular coevolution between residues. The

MI associated with the ith and jth sequence positions is defined as a N×N matrix of the form

I i; jð Þ ¼
P21

xi¼1

P21

yj¼1
Pðxi; yjÞlog

Pðxi; yjÞ
PðxiÞPðyjÞ

ð2Þ

where P(xi, yj) is the joint probability of observing amino acid types x and y at the respective

sequence positions, i and j; P(xi) is the marginal/singlet probability of amino acid of type x at

the ith position. Gaps are counted as residue type 21.[55] I(i, j) varies in the range [0, Imax], cor-

responding to fully uncorrelated and most correlated pairs of residues. The coevolution of a

mutation was measured by the average MI values corresponding to each residue. The calcula-

tion of S(i) and MI was performed by Evol [56].

Structural modeling and protein stability analysis

A protein homology model for human TNSALP was constructed by using the MODELLER

V9.19 [57] platform, using a template corresponding to the human placental alkaline phospha-

tase (PDB id: 1ZED [58]) and a very slow refinement. The template had a sequence identity of

57% to TNSALP and an X-ray crystal structure resolution of 1.57 Å. The quality of the mod-

eled structure was evaluated by Verify 3D [59], PROCHECK,[60] ProSA,[61] and ERRAT

[62]. Each single ALPL missense variant and its mutant structures were automatically gener-

ated by FoldX [63] and its effect on protein stability can be measured by the difference folding

Gibbs free energy (ΔΔG values) between the wild type (WT) and the mutated forms of

TNSALPs. The accessible surface area (ASA) is the atomic surface area of a protein that is

accessible to a solvent, and the relative ASA (RASA) attribute is the per-residue ratio between

the calculated ASA and ’standard’ ASA for a particular mutational residue. As a measure of

amino acid side-chain accessibility, the RASA also serves as a quantitative predictor of variant

pathogenicity [64]. The RASA calculation of TNSALP was performed using through PSAIA

1.0. [65]

Amino acid contact energy network analysis

Amino Acid Contact Energy Networks (AACENs) for the TNSALPs were constructed and

analyzed by using the NACEN R package based on static structures [66]. A node in the net-

work denotes a single amino acid residue, and edges are defined by the environment-depen-

dent residue contact energy between two nodes [67,68].

eij ¼ � ln ðNijN00Ci0Cj0=Ni0Nj0CijC00Þ ð3Þ

Based on AACENs, some network centralities have been defined.[69] The simplest
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centrality measure is the degree centrality (DC) of a node i in AACENs, defined as the total

number of nodes to which it is directly connected to. The betweenness centrality (BC) was

defined as the number of times residue i was included in the shortest path between each pair of

residues in the protein, normalized by the total number of pairs. It is calculated by

BC ¼
P

j;k2N;j6¼k

njkðiÞ
njk

ð4Þ

where njk is the number of shortest paths connecting j and k, while njk(i) is the number of

shortest paths connecting j and k and passing through i. The closeness centrality (CC) for a

node was calculated by the reciprocal of the average shortest path length, which can be calcu-

lated as follows:

CC ¼
ðn � 1Þ

P
k2N;k 6¼mLðm; kÞ

ð5Þ

where N is the set of all modes and n is the number of nodes in the network. The clustering

coefficient (C) measures the degree to which nodes tend to cluster together and is defined as:

C ¼
2ei

KiðKi � 1Þ
ð6Þ

where Ki is the degree of node i and ei is the number of connected pairs between all neighbors

of i.

Dynamic features based on elastic network models

In ENM approaches [35,36], each node represents a Cα atom in proteins and each edge is a

spring γ for connecting two sites within a given cutoff distance rc. Two most commonly used

ENM methods, the GNM and the ANM, are adapted in this paper. The total potential energy

of the ANM and GNM systems with N nodes are expressed as

VGNM ¼ �
g

2

PN� 1

i¼1

PN
j¼iþ1
ðRij � R0

ijÞ � ðRij � R0

ijÞGij

h i
ð7Þ

VANM ¼ �
g

2

PN� 1

i¼1

PN
j¼iþ1
ðRij � R0

ijÞ
2
Gij

h i
ð8Þ

where Rij and R0

ij are the instantaneous and equilibrium distances between nodes i and j, and

Γij is the ijth element of the N×N Kirchoff matrix Γ, which is written as

Gij ¼

� 1 i 6¼ j;Rij � rc
0 i 6¼ j;Rij > rc
�
P

i;i6¼jGij i ¼ j

ð9Þ

8
>><

>>:

In our study, rc between protein nodes were 7 Å and 13 Å for GNM and ANM, respectively.

In comparison with GNM, which only measures fluctuation, ANM provides additional infor-

mation on the motion directions of each residue. Herein, the GNM and ANM calculations

were performed by ProDy [70].

The normal modes are extracted by eigenvalue decomposition Γ = U^UT. U is the orthogo-

nal matrix whose kth column Uk is the kth mode eigenvector, and ^ is the diagonal matrix of
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eigenvalues, λk. Mean-square fluctuations (MSF) of a residue are given by

hð4RiÞ
2
i ¼

3kBT
g

P
k½ðUkLU

T
k Þ
� 1
�ii ð10Þ

where kB and T represent the Boltzmann constant and temperature, respectively. Based on

ENM calculations, several other kinds of matrices can be generated. Form the perturbation

response scanning (PRS) matrix [71], two dynamic features of effectiveness and sensitivity
were defined as row and column averages of the matrix, respectively. The effector residues

most effectively propagate signals in response to external perturbations. The sensor residues

can easily sense signals and respond with dynamic changes. Directly from the Kirchoff matrix,

its eigenvalues can be used to ascertain how important each node is to maintain the overall

mechanical connectedness of the network. This amounts to measuring how much the network

Laplacian spectrum changes when the connections, or couplings, of a node with its neighbors

are deleted. As such, the mechanical bridging score (MBS) for a given mutation reflects the

response ability of this residue. In the symmetrical stiffness matrix, the elements describe the

effective spring constants associated with each residue pair. The stiffness for individual muta-

tional residues is obtained by averaging all the elements in the corresponding row/column of

the matrix. A detailed description of these dynamic features can be found in Bahar’s work

[38]. The statistical analysis of all features was performed in the R language (https://www.r-

proj ect.org/, R Core Team, 2017), version 3.6.2. Plots were generated using the R package

ggplot2, version 3.3.3 [72]. Statistical significance was determined by the Wilcoxon signed

ranked test (P <0.01) in our analysis.

Molecular dynamics simulations

MD simulations were performed on WT and mutant TNSALPs for the conformational

dynamics study. The minimized structures were then slowly heated from 0 to 303.15 K over

100 ps and a two-step equilibration (each 100 ps) was carried out to ensure the correct temper-

ature and pressure of the solvated system was attained. Firstly, the temperature was set at

303.15 K (NVT—constant number of particles, volume and temperature) using the V-rescale

thermostat. Subsequently, equilibration at 1 atm (NPT—constant number of particles, pres-

sure and temperature) was performed using the Parrinello-Rahman barostat [73]. The equili-

brated systems were subjected to production MD for 500 ns using the GPU-enabled version of

the GROMACS software package (version 5.1.4)[74] with the AMBER99SB-ILDN force field

[75], using a integration step of 2 fs. The structures were immersed in an octahedral box filled

with TIP3P water molecules, imposing a minimum distance of 15 Å between the solute and

the box. The nonbonded interaction potential was smoothly switched off between 10 and 12

Å, beyond which coulombic interactions were treated with the particle-mesh Ewald method

[76]. The LINCS algorithm [77] was used to constrain the hydrogen containing bonds. The

atomic positions were saved every 50000 steps (100 ps) for analyses. For each system (WT and

mutant), three independent replicas of 500 ns were performed. GROMACS analysis toolkit

utilities were used to analyze MD trajectories produced during the last 400 ns production run,

and root mean square deviations (RMSDs) and root mean square fluctuations (RMSFs) were

calculated for each system.

Allosteric mutation analysis

Two methods were used to investigate the allosteric effects of mutations. The dynamic residue

network analysis (DRN) was performed by the program, MD-TASK [78]. For each protein sys-

tem, the network was constructed by extracting Cα and Cβ atoms of MD trajectories as nodes,
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and the edge was created when two nodes were within 6.5 Å. The network measure of BC was

also calculated based on DRNs. Then, the allosteric communication pathways were calculated

by connecting mutational sites and allosteric sites with the shortest edges, using the Floyd-

Warshall algorithm [79]. The AlloSigMA server [80,81] was used to evaluate the allosteric

effects of each mutation based on the structure-based statistical mechanical model of allostery.

This statistical mechanical model estimates the allosteric free energy difference Δg of each resi-

due to perform the allosteric signaling and mutation analysis in TNSALP.

Results

Sequence and structural landscapes of ALPL mutations

To clarify the sequence characteristics of genotype and phenotype underlying ALPL, we first

divided all mutations into three categories according to the severity of HPP: the mild form,

severe form, and control group. Fig 2A shows the distribution of mutational data, while the

detail description can be found in S1 Text. The primary sequence analysis showed that there

were 261 conserved residues (conservation score> 5, see S2 Fig) among the 524 full length res-

idues of the TNSALP monomer. Among the mutation sites that cause severe phenotypes,

Fig 2. Sequence and structural analysis of ALPL mutations in the TNSALP protein. (A) The composition and statistics of ALPL mutations of based on the

three categories: mild HPP, severe HPP, and control group. (B) The conservation distribution of mutations related to different phenotypes. (C) The structure of

the TNSALP protein and the distribution of mutation sites in the active site (red), calcium site (purple), crown domain (brown), dimeric interface (blue), and

N-terminal domain (green). Missense mutations in the three groups are shown as colored spheres based on the coloring scheme of the domains to which they

belong. (D) Distribution of different clinical phenotypic mutations across the length of the TNSALP protein.

https://doi.org/10.1371/journal.pcbi.1010009.g002
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more than 71.0% of the sites are highly conserved, while in the mild group, this proportion is

65.0%, and in the control group, it is much lower, at only 27.3% (Fig 2B). It is worth noting

that half of these highly conserved sites in the control group are from the intersection of the

mild group and the severe group. Furthermore, the evolutionary landscape of the three types

of ALPL mutations was plotted in terms of S(i) and MI profiles.

In general, disease-causing variants were more likely to occur at conserved sites, while the

non-pathogenic variants are more likely to occur at the less conservative sites (Fig 3A). The

distributions of S(i) and MI scores for mutations were very similar, and a significant positive

correlation between coevolution and entropy was observed (S3A Fig), and the distributions of

S(i) and MI scores for mutations were also very similar. In contract with S(i), the higher MI
values of amino acids correspond to residues that were highly coevolutionary. As shown in Fig

3B, pathogenic mutations including both severe and mild mutations occurred at lower coevo-

lutionary residues.

The 3D structure of TNSALP was then computationally modeled by using the crystal struc-

ture of human placental alkaline phosphatase as the template (S4 Fig and S1 Text). By mapping

all the mutations onto the modeling TNSALP structure, we identified the spatial distribution

of the three kinds of mutations (Fig 2C and 2D). The major difference in the spatial distribu-

tion between pathogenic and control groups was that the control group had no mutations at

the active site, thereby suggesting the role of active sites in HPP pathogenicity. According to

the RASA (Fig 3C), residues were classified into three classes, i.e., buried areas (RASA < 5%),

semi-exposed areas (between 5% and 30%), and fully exposed areas (RASA > 30%). Although

different types of mutations were distributed across all functional domains, disease-causing

variants were more likely to occur in buried areas (122 mutations, 65.9%). In contrast, non-

pathogenic variants were more likely to occur at the surface (32 mutations, 56.1%).

The statistical analysis of S(i), MI and RASA for control, mild, and severe mutations

showed statistical significance between the control and mild, and control and severe muta-

tions; however, there was no statistical significance between the mild and severe mutations

(Fig 3D–3F). Accordingly, structural environment and evolutionary studies have found that

the HPP-causing ALPL mutations, especially severe mutations, are located in conserved, less

coevolutionary, and buried residues with small S(i), MI and RASA scores.

Protein stability effects of severe and mild mutations: Structural

determinants of TNSALP stability and energetic hotspots

To explore the thermodynamic determinants of mutational hotspots and evaluate their func-

tional significance, FoldX approach [63] was adopted for the predicting of the free energy

changes induced by single point mutations. As shown in Fig 4A, we found that most of the dis-

ease mutations were associated with the increase in the folding free energy (ΔΔG>0), thus

leading to the reduced protein stability. Importantly, the largest destabilization changes upon

substitutions correspond to the group of mutations with severe phenotype (Fig 4A). At the

same time, the mean value of ΔΔG for most mutations in the control group, were smaller than

1.0 kcal/mol. Furthermore, as shown in Fig 4B, the predicted folding free energy changes ΔΔG

for mutations that cause a severe phenotype were significantly larger than that the ones in the

mild group and in the control group. These findings indicated that most of the disease-causing

mutations are associated with a significant decrease in the protein stability, and this trend var-

ies in different phenotypes.

In addition, ΔΔG provides a benchmark or metric that can be used to compare with physi-

cochemical properties for large-scale analysis of other mutations. We have compared the ΔΔG

with the RASA, S(i) and MI, and weak correlations were found among them (S3B–S3D Fig).
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The low coefficients imply that the three properties provide additional measures of ΔΔG for

describing ALPL mutations, namely pathogenic mutations tend to have a high ΔΔG value and

low RASA, S(i), and MI values. For example, pathogenic mutations, including G220R, G221R,

Fig 3. The (A) entropy (S(i)), (B) coevolutionary (MI) and (C) relative solvent accessible area (RASA) profiles for each residue in TNSALP;

mild, severe, and control mutations are highlighted as yellow, red, and blue diamonds, respectively. The comparison of (D) the S(i), (E) MI
and (F) RASA, between the control group mutations and mild and severe mutations. Statistical significance was determined by the Wilcoxon

signed-ranked test, with P values<0.01.

https://doi.org/10.1371/journal.pcbi.1010009.g003
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G326R, G129R, P108L, R223W, and G63R (severe mutations), and G339R and A468V (mild

mutations) showed obvious energy changes but with low RASA, S(i), and MI scores. Based on

the above analysis, we concluded that most of the “severe” and “mild” mutations were pre-

dicted to have large ΔΔG values and differed in terms of evolutionary conservation and physi-

cochemical properties.

It is worth noting, however, that severe mutations R272L, N47I, L299P, R272H, H438L, and

R450C, and mild mutations R272H, R450H, V424A, K264R, E21K, V424M, R184Q, E84V,

N47I, K422R, and T148I showed a relatively moderate free energy change (Fig 4). At the same

time, some non-pathogenic mutations I269V, H482N, F327C, A488S, T277A, T255I, I317L,

and D239Y, displayed larger free energy changes. Structurally, these mutations were distrib-

uted in different domains and did not cluster together (Fig 4C). These results indicated that

functional effects of pathogenic mutations may be determined not only by the local energetic

changes but could be also influenced by changes in the long-range allosteric interactions and

potential reorganization in the global interaction networks.

Fig 4. (A) The folding free energy changes induced by single point mutations. The profiles of mild, severe, and control mutations are

shown as yellow, red and blue bars, respectively. (B) The significant difference between the predicted folding free energy change of

ALPL single residue variations in the control, mild, severe groups was measured by Wilcoxon. test, with P values<0.01. (C) The

structural distribution of disease-causing mutations with low ΔΔG.

https://doi.org/10.1371/journal.pcbi.1010009.g004
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Modeling of residue interaction networks reveals allosteric signatures of

ALPL mutations

Network theory has become a widely used method to quantify protein structures and functions

in terms of their topological connectivity [82]. In our analysis, we used the difference between

network centrality measures of mutant and WT values to describe the topological change of

TNSALP AACENs caused by ALPL mutations. For each amino acid substitution, four com-

mon network parameters including DC, BC, CC, and C were calculated (see Materials and

Methods for a detailed definition of these parameters). The mutation-induced changes ΔDC,

ΔBC, ΔCC, and ΔC were computed on each mutation and analyzed for the mild, severe, and

control groups, as illustrated in Figs 5 and 6.

The profiles in Fig 5A–5D indicted that most of the mutations can induce a wide range of

changes in the values of DC, CC, and C network parameters. In general, some common peaks

were found in the ΔDC, ΔBC, and ΔCC profiles, such as the severe mutation R391H and three

mild mutations G162S, T166I, and R272C. Detailed analysis of the ΔDC profile showed that its

peaks corresponded to pathogenic mutations, including severe mutations R391C, Q207P,

D294A, and L289F and mild mutations A468V, G162S, Y117C, G144E, E291K, and D406G.

These significant peaks aligned precisely with functional centers, including hotspot positions

involved in the crown domain, the homodimer interface, and the Ca2+ binding site, thereby

suggesting their latent functional roles. In comparison, smaller variations were observed in the

Fig 5. Network topological and dynamic analysis of mutations in ALPL. (A)ΔDC, (B) ΔBC, (C) ΔCC, (D) ΔC, (E) MSF, (F) effectiveness, (G) sensitivity, (H)

MBS, and (I) stiffness profiles for the three types of mutations. Control, mild and severe mutations are represented as blue, orange, and red bars, respectively.

https://doi.org/10.1371/journal.pcbi.1010009.g005
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ΔBC profile (Fig 5B), but much sharper peaks for severe mutations F355I, D378H and A446T

and mild mutations E452K, Y117C, G162S, R152C, and T166I were found. Functional domain

analysis revealed that E452 and D378, R391, and A446, R272 are involved in the active site,

crown domain, and Ca2+ binding site, respectively. Eleven peaks were found in both the ΔCC

and ΔC profiles. In the ΔCC profile (Fig 5C), eight corresponded to pathogenic mutations,

including G162S, T166I, G63R, T165I, L208F, E291K, G220R, and N47I, and only one

(E291K) was located at the functional domain. In the ΔC profile (Fig 5D), the other set of path-

ogenic mutations, peaks corresponded to R335T, N47I, E429K, D294Y, G455D, V459F,

E354D and V431A, including many functional sites. Among these, R335T and G455D were

located at the active site, D294Y at the Ca2+ binding site, and E429K at the crown domain.

Fig 6. Comparison of the change of four network centralities and five dynamics-based parameters, including (A)ΔDC, (B) ΔBC, (C) ΔCC, (D) ΔC,

(E) MSF, (F) effectiveness, (G) sensitivity, (H) MBS, and (I) stiffness, among mutations in the control, mild, and severe groups by Wilcoxon signed

ranked test.

https://doi.org/10.1371/journal.pcbi.1010009.g006
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A series of ENM-based dynamics descriptors, including GNM-based MSF, PRS-based

effectiveness and sensitivities, and ANM-based mechanical bridging score (MBS) and stiffness,

have been introduced to enhance the predictive ability of disease-related mutations [38]. Here,

we employed these dynamic features to systematically characterize different types of ALPL
mutational sites. First, mapping the three types of mutations onto the dynamic profiles based

on the TNSALP protein provided primary insight into the interpretation of the functional

impact of variants in light of the intrinsic dynamics of the mutational site (Fig 5E–5I). As

shown in the MSF profile (Fig 5E), pathogenic mutations including both mild and severe

mutational sites always demonstrated lower MSF values, except for some pathogenic muta-

tions at the Ca2+ binding domain. Some particular pathogenic mutations, located at minimal

positions that correspond to hinge sites have been found, such as M62, G63, S65, A377, D378,

and H381, which belong to severe mutational sites, and D60, V461, and G473, which corre-

spond to mild mutational sites. Structurally, these hinge mutational hotspots are located at the

active site and the dimer interface. These conformational dynamic signatures of disease-associ-

ated mutations have been revealed both at the genome [83] and proteome-levels [33].

Regarding the PRS analysis, two matrices were used to quantify the allosteric effect of each

residue, which are effectiveness and sensitivity, for evaluating the propensity of residues to act

as sensors or as effectors of allosteric signals. As shown in the profiles in Fig 5F and 5G, the dis-

tribution of effectiveness and sensitivity for ALPL mutation hotspots shows different trends. In

general, most of the pathogenic mutations match almost exactly with some peaks of the effec-

tiveness profile, with sharp dominant peaks being found for three severe mutational sites

(G63, A377, and V459). On the other hand, the peaks of the sensitivity profile correspond to

some control mutational sites, while pathogenic mutational sites have smaller sensitivity, such

as V95 and G473 in the mild group and G63, S65, and V459 in the severe group. As two

unusual ENM-based dynamic features, the distribution of mutations in MBS and stiffness pro-

files are shown in Fig 5H and 5I. For the MBS profile, the overall distribution of pathogenic

mutational sites is larger than that of control mutational sites, highlighting the importance of

pathogenic mutational sites in maintaining the stability of the ALPL protein.

In addition, both ΔBC and ΔCC profiles showed significant differences between groups of

mutations (Fig 6). As shown in Fig 6B, the mean values of ΔBC for the severe, mild, and con-

trol groups were 0.05, 0.16 and 0.21, respectively, with P = 1.889e-07, 9.906e-09, and

0.0005129, respectively, by the Wilcoxon signed rank test between the severe and mild, severe

and control, and mild and control groups. In contrast, as shown in Fig 6C, the mean values of

ΔCC for the severe, mild, and control groups were 0.03, 0.17 and 0.17, with P = 9.646e-05,

0.0001094, and 0.0003274, respectively, by the Wilcoxon signed rank test, between the severe

and mild, severe and control, and mild and control groups.

An important revelation of the protein network centrality analysis is that pathogenic ALPL
mutations typically lead to significantly higher variations in ΔBC and ΔCC parameters as com-

pared to the control group (Fig 6). Given topological nature of the network parameters mea-

suring the global effect of mutations, the observed magnitude of the mutation-induced

changes in the betweenness and closeness centrality suggests that pathogenic mutations, and

especially severe mutations, may significantly alter the long-range connectivity of the interac-

tion network. In particular, the ΔBC profile displayed the most pronounced changes and

highlighted the potential allosteric effects for pathogenic mutations [84].

To clearly observe the ability of dynamic parameters to distinguish mutations in different

groups, statistical analysis was further performed on the data of severe, mild, and control

mutational sites. As shown in Fig 6E, the control group had the highest mean MSF, with

P = 1.8e-05 and 0.00021 by the Wilcoxon signed rank test, in comparison with mild and severe

mutations, showing significant differences between both pathogenic mutational sites and the
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control group. However, significant differences were not found between mild and severe

mutational sites, with P = 0.75. Similar significant results were also found for effectiveness (Fig

6F), sensitivity (Fig 6G), and MBS (Fig 6H), while significant differences in stiffness could not

be found among the three groups of mutations (P> 0.01, Fig 6I).

Atomistic simulations and dynamic network modeling determine the

effects of severe phenotype-associated mutations on allosteric

communications

Based on previous results, some severe phenotype-related mutations have relatively low ΔΔG

but higher ΔBC values in network topology. To gain energetic and topological insights, we

compared ΔBC and ΔΔG values for all mutations. The scatterplot revealed that N47I, L289F

and M355I were three severe mutations with large ΔBC but low ΔΔG (Fig 7A). To determine

the dynamic effects induced by severe phenotype-associated mutations, we performed a set of

Fig 7. (A) The distribution of ΔΔG and ΔBC for ALPL mutations. Scatterplot showing the distribution of ΔBC vs ΔΔG of different mutation types. Severe, mild

and control mutations are depicted in red, yellow, and blue, respectively. N47I, L289F, and M355I are three severe mutations with low ΔΔG and high ΔBC.

Among the three significant mutations predicted by the scatterplot, two (E452K and R391K) were not originally included in the severe mutation group but

were validated as two severe mutations in the newly collected clinical samples. (B) Mean values of three replicas of the differential RMSF (ΔRMSF) of N47I

(blue), L289F (red), and M355I (green) with respect to WT. For each system, a replica of 500 ns was singled out to compare the BC values of the two different

networks of TNSALP WT (C) and N47I (D) mutant. The green and grey lines show the BC values of residues of DRN and AACEN. Mild and severe mutations

are highlighted as yellow and red diamonds, respectively.

https://doi.org/10.1371/journal.pcbi.1010009.g007
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three independent replicas, all-atom MD simulations for WT and three mutant TNSALPs

caused by N47I, L289F, and M355I variants (Fig 7). The RMSD values of Cα atoms served as

an overall measurement of the departure of the structures from the initial coordinates (S5A–

S5D Fig). All the systems became convergent for duration of 100–500 ns, and the RMSD values

became stable during the last 400 ns of the simulations. The conformational dynamics results

(S5E–S5H Fig) revealed that the profile of RMSF was very consistent in three replicas of each

system and also consistent between the WT and mutant systems, and no conformational

change occurred at the active site, further explaining why ΔΔG for these severe mutations was

small. The differential fluctuation ΔRMSF, with respect to WT, showed considerable changes

in regions around the ion binding pocket and the Ca2+ binding site located in the other mono-

mer, with two of the largest peaks at residues N190 and S258 (Fig 7B). This suggests the exis-

tence of allosteric communication between the mutant sites and these two regions.

Accordingly, in the four systems, we selected mutant sites in chain A as starting points and

N190 and S258 of chain B as the target residues to further identify specific allosteric pathways

caused by severe phenotype-associated mutations. In addition, the comparisons of BC values

based on DRNs among three independent MD replicas (S6 Fig), as well as between AACENs

and DRN (Figs 7C and 7D and S7) were performed. The overall similar profiles of BC not only

show the reproducibility of MD simulations, but also indicate that BC provides a robust net-

work index. The difference is that DRN can capture more peaks that correspond to disease

mutations, such as T166I, M295V, I395V, and S445F (mild mutations) and P292T and G334D

(severe mutations) in WT (Fig 7C), while P108L, T166I, M295V, and G473S (mild mutations)

and A348T (severe mutations) in N47I mutant (Fig 7D).

The shortest path algorithm based on dynamic network models was employed to identify

specific allosteric pathways (Table 1). As shown in Fig 8, the intermolecular interaction of A:

G473-B: V95 was predicted as the key bridge in WT, and the other interaction of A: G386-B:

Q106 was predicted as the key bridge in mutants. It was, therefore, determined that WT and

mutant TNSALPs use different allosteric interfaces for signal transmission. Overall, pathway

plasticity was found to exist, although the structures between WT and mutants were well con-

served, conforming to the recent function-centric allosteric regulation study [85]. Among

these pathways, a common region including three active site residues (T100!P108!D109)

corresponding to mutational sites was also found, suggesting that these mutational paths may

lead to the same functional state. In particular, the molecular signatures showed that T100,

P108, and D109 have relatively high effectiveness and ΔBC, demonstrating that these nodes

are key sites for structural signal propagation.

The comparison of allosteric pathways reveals several important insights. First, by using the

same starting mutational sites and ending points, the mutant TNSALPs exhibit shorter alloste-

ric pathways, which is in accordance with our hypothesis that the mutants caused by severe

mutations have higher allosteric propensities. The system with the largest reduction in signal-

ing path nodes is the mutant caused by M355I, which has the highest ΔBC and a relatively

small ΔΔG. In WT, the path from M355 to S258 passed through the nodes

F462!S463!L471!H472!G473 on the dimeric interface of the chain with mutations and

the active sites P108 and D109 in the other chain (Fig 8A). In contrast, none of these sites par-

ticipated in the signaling paths in the mutants. Hence the whole length becomes shorter and

straight (Fig 8B). The same situation occurs in the path from M355I to N190 (Fig 8C and 8D).

Second, the pathways in mutants involve fewer active sites, interfacial residues, and mutational

sites. This comparison further highlights these functional regions as hubs for long-range allo-

steric communication in WTs, while it also means that the functional role of these reduced

nodes may be lost if a severe mutation occurs. An extreme situation is observed for N47I, in

which the path from I47 to S258 does not pass through the active area and employs the shortest
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and most straight path. Last, the path patterns are more robust in WT than in mutant states,

suggesting that severe mutations introduce more pathway plasticity. For example, the shortest

pathways from residues N47, L289, and M355 to N190 of the other chain in the WT shared

some similar nodes, including P108, D109, G126, R184, D185, Y187, and S188, in the other

chain, with most of located at the active site or ion binding pocket, and with all crossing the

same area and to the ending residue N190 (orange circle region in Fig 8C and 8D). However,

the situation was different in mutants. Fewer residues were shared in the three mutants, and

only residue P108 showed the shortest pathway from I47, F289, and I355 to N190. The situa-

tion was similar in the paths from residues I47, F289, and I355 to S258 of the other chain.

Three paths shared residues I204, A205, Y206, L252, and T255 of the other chain in the WT

and none in the mutants.

As shown in Fig 8A, among the four mutations (E451K, M355I, R391C, and Y117C) with

the largest ΔBC but low ΔΔG values, only M355I was related to the severe HPP phenotype. At

the time of waiting, the ALPL mutation database has been updated by including several more

severe mutations. We were surprised to find that the new patients with severe phenotypes

Fig 8. Allosteric paths originating at three mutational sites and terminating at S258 in the WT (A) and mutant states (B), as well as terminating at N190 in

the WT (C) and mutant states (D), respectively. The TNSALP structure is depicted as represented by a semitransparent colored cartoon, and the starting and

ending residues of all the paths are represented as green and cyan spheres, respectively. The alpha-carbon of the path through the residues is shown as silver

(chain A) and orange (chain B) spheres, in which active sites are represented by red spheres.

https://doi.org/10.1371/journal.pcbi.1010009.g008
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related to E452K and R391C were reported to have mild and control mutations. To further

investigate their allosteric effects and whether they are an intrinsic dynamic of these severe

mutational sites, single-residue perturbation analysis was performed by using the AlloSigMA.

The results showed that perturbations of all these five mutational sites induced intermolecular

allosteric effects (Fig 9) in the form of both positive and negative modulation with maximum

values of Δg (N47!chain B) = 2.44 kcal/mol, Δg (N289!chain B) = 1.07 kcal/mol, Δg

(N335!chain B) = 0.99 kcal/mol, Δg (R391!chain B) = 1.05 kcal/mol and Δg (E452!chain

B) = 0.86 kcal/mol, respectively. Although ΔΔG and Δg have different biological means refer-

ring to folding stability and allosteric ability, the comparison of them was also performed for

these five mutations (S8 Fig). The most interesting finding is that N47I has smallest ΔΔG but

large Δg, which is in agreement with MD simulation result that the mutant is stable but show

most different allosteric landscapes. The analysis exhibited an evident influence on the stability

of some functional regions, including the Ca2+ binding and crown domain, thereby revealing

that severe mutations can induce changes in the stability of other sites and affect the catalytic

activity of proteins.

Taken together, the MD results suggested that severe ALPL mutations may affect the signal

transduction pathway between the two monomers of TNSALP. Allosteric pathways in WTs

are robust and involve some functional sites consisting of active, interfacial, and mutational

residues. In the allosteric mutant states, the overall pathway pattern is more “flexible”, with

shorter pathways involving fewer functional sites, resulting in a severe phenotype. The

Fig 9. Allosteric effects of three studied severe mutations (N47I, L289F and M355I) and two predicted severe mutations (R391C and E452K) calculated

by AlloSigMA. Cartoon structures of the TNSALP protein colored according to their free energy values obtained for the cases of (A) N47I, (B) L289F, (C)

M355I, (D) R391C and (E) E452K, while blue color indicates negative allosteric free energy and red color indicates positive modulation. (F) Their free energy

profiles are illustrated graphically with the residue index (chain A: 1–524; chain B: 525–1048) on the x-axis and Δg value on the y-axis. Blue, yellow, green, pink

and red profiles represent the results for N47I, L289F, M355I, R391C and E452K, respectively.

https://doi.org/10.1371/journal.pcbi.1010009.g009
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allosteric free energy calculation once again suggest that ΔBC is a good and facile indictor for

predicting severe mutations, whose molecular pathogenicity does not alter the local stability at

active sites to change the protein folding energy but instead generates alternative and long-

range molecular effects.

Machine learning identifies key molecular features for classification of

different mutation types

To determine the relationship between the above studied features, their redundancy and ability

to classify and predict various mutation types, we first computed the pairwise correlations

between different prediction scores by using Spearman’s rank correlation coefficient (Fig

10A). These features can be classified into three major types according to their related

sequence, network, and dynamics information. Among sequence-based features, S(i) has high

positive correlations with MI and RASA, but these three features all have negative correlations

with conservation calculated by Consurf. For the four network parameters, ΔDC, ΔBC and

ΔCC show significant correlations; only ΔC is an independent factor. The dynamics-based

matrices that show more complex correlations have been divided into two groups: stiffness,

Fig 10. Performance evaluation of feature classification. (A) Heatmap of pairwise Spearman’s rank correlation coefficients between different features. (B)

Feature importance of all used features ranked based on mean decrease accuracy in the RF classification. ROC curve AUCs for 14 features as a function of

1-specificity, including ROC curves for evaluating each feature in classifying ALPL mutations between (C) the control and severe groups, (D) control and mild

groups, and (E) mild and severe groups.

https://doi.org/10.1371/journal.pcbi.1010009.g010
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MSF, and sensitivity; effectiveness and MBS. A highly positive correlation was predicted within

each group, but a negative correlation was found between the two groups. The special index

ΔΔG did not show any correlation with other features. Accordingly, these features could com-

plement our understanding of the molecular signatures of HPP-causing mutations.

Next, we employed Radom Forest (RF) model to classify mild, severe, and control groups

using the 14 features mentioned above (see S2 Text for details). We considered classifying the

model containing five variables, whose accuracy of repeated cross-validation was 80.5%, as the

optimized model, which was used for comparison with the model using all features. To be

more specific, the feature importance was ranked by the mean decrease accuracy (Fig 10B).

Most interestingly, we found that the top four important features were all network-based fea-

tures, including ΔDC, ΔBC, ΔCC, and ΔC, suggesting an essential role of protein network

topology in controlling mutation events. ΔΔG is an important feature and is also an important

determinant of protein stability in mutations. To our surprise, features relating to ENM pro-

tein dynamics were not ranked as important predictors. This may be caused by the loopy

structure of the TNSALP protein. By considering only the top five features, the RF model

yielded an accuracy of 96.8%. However, taking all features into account, the accuracy of the RF

model dropped to 92.2%. The inclusion of more features reduces the predictive accuracy of the

RF model, which led us to focus on the specific interpretability of each parameter.

To aid in the interpretability of the classification effect of each parameter, we further evalu-

ated the performance of the 14 features of the dataset composed of mild and severe mutations,

mild and control mutations, and severe and control mutations. To this end, the ROC curves

with the AUCs of the 14 metrics for each comparison group were plotted, and the related val-

ues are listed in Table 2. First, we examined the difference in the AUCs for the 14 functional

features of the severe and control groups (Fig 10C); ΔΔG showed appreciable performance

with an AUC of 0.8447. Moreover, the S(i), conservation score, and ΔBC also showed good

performance with AUCs, all greater than 0.73. We then tested the performance of the 14 fea-

tures between mild and control group mutations (Fig 10D), as well as the mild and severe

group mutations (Fig 10E). In the classification of the mild group and control group, two

sequence-based and four dynamics-based parameters showed moderate predictive perfor-

mance. The AUCs of the conservation score, entropy, MSF, effectiveness, sensitivity, and MBS

Table 2. The AUCs of 14 characteristics or parameters in each comparison group. The characteristics that per-

formed best in each group are highlighted in red.

Features Mild vs control Severe vs control Mild vs severe

conservation 0:7493 0.7927 0.5632

S(i) 0.7204 0.7934 0.5906

MI 0.6633 0.7336 0.5841

RASA 0.5284 0.5043 0.5329

ΔΔG 0.6641 0:8447 0.7048

ΔDC 0.6185 0.5991 0.5538

ΔBC 0.6618 0.7636 0:7471
ΔCC 0.6675 0.6961 0.6682

ΔC 0.5886 0.6081 0.5539

MSF 0.7023 0.6893 0.5140

effectiveness 0.6709 0.7009 0.4850

sensitivity 0.6802 0.6957 0.4968

MBS 0.6666 0.6632 0.4893

stiffness 0.619 0.5281 0.5860

https://doi.org/10.1371/journal.pcbi.1010009.t002
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were 0.7493, 0.7204, 0.7023, 0.6709, 0.6802, and 0.6666, respectively. In contrast, in the classifi-

cation of the mild and severe groups, we found that ΔBC showed the best performance, with

an AUC = 0.7471, while ΔΔG showed the second-best performance, with an AUC = 0.7048.

The most interesting finding is that ΔΔG is a good indicator for identifying disease mutations,

while ΔBC is the best indicator for classifying mild and severe mutations. The machine learn-

ing analysis showed that sequence, dynamics and network features contribute to classification

of ALPL mutations and their phenotypes.

Discussion

As the biological hallmark of HPP, the reduced activity of TNSALP is caused by loss-of-func-

tion mutations in the ALPL gene; varying levels of reduced activity are related to mild or severe

HPP phenotypes. Despite some progress, more research is needed to obtain a comprehensive

understanding of genotype-phenotype interrelationships in HPP. Thus, in this study, the func-

tional landscape of ALPL mutations was established by investigating a set of features generated

from the protein sequence, network topology, and ENM dynamics calculation and their rela-

tionship with different HPP phenotypes. Further structure-function studies including MD

simulation and structural-communication pathway analysis of mutant TNSALPs have sup-

ported our arguments that mutational hotspot sites often correspond to global mediators of

allosteric interactions. In addition, a machine learning classifier was developed not only to

examine the relationship between the pathogenicity status of mutations and their biophysical

attributes, but also for the prediction of mutations in the control, mild, and severe groups. We

have found that in addition to ΔΔG as the commonly used predictor, coevolutionary conserva-

tion and network-based features also yield strong signals in machine learning predictions and

provide orthogonal information. These findings suggest that the study of molecular signatures

and allosteric regulation of ALPL mutations may be a step toward defining a greater quantita-

tive genotype-phenotype interrelationship in HPP.

Through the large-scale analysis of disease-causing ALPL mutations, we propose the follow-

ing possible molecular principles underlying HPP-related mutations. First, HPP pathogenicity

is largely due to the structural instability of TNSALP caused by ALPL mutations, which have

variable effects on enzyme activity. Thus, for such cases, ΔΔG is a satisfactory and acceptable

index for predicting pathogenic mutations, especially for distinguishing mutations between

the control and severe groups. There is also the possibility of extrapolating our methods of

using ΔΔG to estimate changes in protein stability upon mutations as a popular way to predict

pathogenic mutations in other diseases. Many pervious works have proposed that BC and ΔBC

are good network predictors for identifying important mutations [86,87]. Second, in our

paper, we further demonstrate that ΔBC is also a good indicator to distinguish mild and severe

groups in pathogenic mutations. We speculate that mutations in the severe group have stron-

ger allosteric effects than mutations related to the milder forms of HPP, serving as “allosteric

mutations” [88,89]. Analysis of allosteric properties of severe mutations adds an additional

confirmatory layer to segregate variants in “mild” and “severe” states, thereby furthering

understanding of the allosteric basis of loss-of-function mutations. Third, for the classification

of mild mutations and differentiation from the control group, coevolutionary conservation has

been shown to be the most important predictor, thereby suggesting that mild pathogenicity

may be related to amino acid changes with small evolutionary substitution probability. How-

ever, to reach the elusive goal of establishing the precise relationship between ALPL mutation

genotypes and HPP phenotypes and a more reliable prediction model or score, such as protein

regulatory and functional binding site prediction [90], more clinical data on mutations [91]

and data on enzyme activity [13] are needed.
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Supporting information

S1 Fig. Distribution of ALPL mutations in terms of WT TNSALP sequence and structure.

(A) The sequence overlaps between the control, mild and severe mutations. The WT sequence

is at the bottom and the row for each type of amino acid. The mild, severe, and control pheno-

types are colored with yellow, red and blue. (B) The mild, severe, and control mutation sites

on the TNSALP WT structure are shown as spheres.

(TIF)

S2 Fig. Evolutionary conservation analysis performed for TNSALP protein sequence 1to

524 aa using ConSurf. The amino acids are colored based on their conservation grades and

conservation levels. A grade of 1 indicates rapidly evolving (variable) sites, which are color-

coded in turquoise; 5 indicates sites that are evolving at an average rate, which are colored

white; and 9 indicates slowly evolving (evolutionarily conserved) sites, which are color-coded

in maroon. If the interval in a specific position spans 4 or more color grades the score is con-

sidered as unreliable. Such positions are colored light yellow in the graphic visualization out-

put.

(TIF)

S3 Fig. Comparisons of different molecular signatures for ALPL mutations. (A) The high

correlation between entropy S(i) and coevolution MI, and there are relative weak negative cor-

relations (B) between ΔΔG and RASA, (C) between ΔΔG and S(i), (D) between ΔΔG and MI.
(TIF)

S4 Fig. 3D structure quality assessment of TNSALP modelled structures using Verify3D (B),

PROHECK (C), ProSA (D and E) and ERRAT (F). Majority of residues within the N/C-termi-

nals and loop regions exhibited high ERRAT values, low Verify 3D values and bad Psi degrees.

Verify-3D analysis with 91.37% of the amino acids scoring > 0.2 in the 3D/1D profile; Only

5% of all the residues showed bad Psi degrees, and majority of which located in the terminal

loops indicated that the model is well constructed. ProSA Z-score of − 9.07 shows the Z-value

of the protein was similar to native protein of equivalent sizes(D). The reliability of the model

was also shown by the ProSA energy plot with no obvious problematic regions with a positive

value in the ProSA energy plot(E). Besides, the ERRAT plot is expressed as percentage of pro-

tein with calculated error value falls below the 95% rejection limit, and an ERRAT score of

84.97 indicates a good quality model.

(TIF)

S5 Fig. Conformational dynamics of TNSALPs. (A-D) RMSDs for WT and mutated

TNSALP (N47I, L289F and M355I) during the MD simulations, and (E-H) RMSF results for

α-carbon atoms of four TNSALP systems. For each system, three independent replicas (1,2,3)

of 500 ns were performed, and the results are shown in blue (replica 1st), red (replica 2nd) and

green (replica 3rd), respectively.

(TIF)

S6 Fig. DRN BC values of TNSALPs. DRN BC of WT and mutated TNSALP (N47I, L289F

and M355I) during the three independent replicas of 500 ns MD simulations. For each system,

the BC results are shown in blue (replica 1st), red (replica 2nd) and green (replica 3rd), respec-

tively.

(TIF)

S7 Fig. Comparison of BC values of AACEN and DRN. For each system, a replicas of 500 ns

was singled out to compare the BC values of the two different networks of L289F (A) mutant
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and M355I (B) mutant. The green and grey line shown the BC values of residues of DRN and

AACEN. If the residues corresponding to the peaks of DRN BC has the mild and severe muta-

tions we collected, it is highlighted as yellow and red diamonds, respectively. DRNs can cap-

ture more peaks that correspond to disease mutations, such as T68M, T165I and I395V (mild

mutations) and G334D (severe mutations) in L289F mutant, while T68M, V95M, T165I,

D378V and L414M (mild mutations) and D378V (severe mutations) in M355I mutant.

(TIF)

S8 Fig. Graphical comparison of ΔΔG (the green line) and Δg (the orange line) for the choose

severe mutations.

(TIF)

S1 Table. Collected mutation data of three kinds of phenotypes, with their structural

domain annotation and various computational molecular signatures.

(XLSX)

S1 Text. Sequence and Structural Landscape of ALPL mutations.

(DOCX)

S2 Text. Machine Learning Models for Feature Selection.

(DOCX)
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