
Contents lists available at ScienceDirect

Bone

journal homepage: www.elsevier.com/locate/bone

Full Length Article

Biological stenciling of mineralization in the skeleton: Local enzymatic
removal of inhibitors in the extracellular matrix
N. Reznikova,⁎, B. Hoacb,1, D.J. Bussc, W.N. Addisond, N.M.T. Barrose, M.D. McKeeb,c,⁎

aObject Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada
b Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
c Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
dDepartment of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
e Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil

A R T I C L E I N F O

Keywords:
Mineralized tissues: Bone
Phosphate-regulating endopeptidase homolog
X-linked (PHEX)
Tissue-nonspecific alkaline phosphatase
(TNAP, TNSALP, ALPL)
Pyrophosphate
Osteopontin
Stenciling principle
Hypophosphatasia
X-linked hypophosphatemia
Review
Mineralization
Biomineralization

A B S T R A C T

Biomineralization is remarkably diverse and provides myriad functions across many organismal systems.
Biomineralization processes typically produce hardened, hierarchically organized structures usually having
nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions.
Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine
environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates),
whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and ter-
restrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic
crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal
and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification,
ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from
cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive
peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate miner-
alization, more recently the importance of their enzymatic removal from the extracellular matrix has become
increasingly understood. Great progress has been made in deciphering the relationship between mineralization
inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as
gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases
having osteomalacia/odontomalacia (soft bones and teeth) – namely hypophosphatasia (HPP) and X-linked
hypophosphatemia (XLH) – where inactivating mutations occur in the gene for the enzymes tissue-nonspecific
alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked
(PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes
together to describe the dual nature of regulation of mineralization – through systemic mineral ion homeostasis
involving circulating factors, coupled with molecular determinants operating at the local level in the extra-
cellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in
skeletal mineralization biology called the Stenciling Principle – a principle (building upon seminal work by
Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with
precision the location and progression of mineralization.

1. Introduction

Mineralized skeletons have always been a wonder of Nature. We
marvel at them from empirical experimentation, from clinical knowl-
edge, from studying the stunning variation of life forms, and also from
fossil and archeological records. In a synergistic merger of geology/

mineralogy with biology, biomineralization mechanisms make use of
the very same mineral ions that exist outside the realm of life and
biologically guide them towards the construction of composite func-
tional assemblies having inorganic phases typically integrated with an
organic extracellular matrix. In the vertebrate skeleton, this merger of
organics with inorganics forms a sublime, reproducible and unique
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structure with multiple functions and with the capability of functional
adaptation, growth and repair [1].

Since the most valuable commodity in biology is energy, the dis-
tinctive features of Nature's designs in biomineralization are their
frugality and multifunctionality [2]. For example, think of the gradual
dissolution of the calcium carbonate avian eggshell from within during
fertilized egg incubation. The internal dissolution of the calcitic egg-
shell serves the dual purpose of providing calcium to the developing
calcium-phosphate skeleton of the embryo, while at the same time
thinning the shell from the inside for the moment when the bird needs
to crack it for hatching (pipping) [3]. As another example of multi-
functionality, consider the removal of calcium ions from the in-
tracellular compartments of marine organisms in order to reduce cy-
totoxicity, while at the same time providing a mineral ion for
constructing an outer protective shell [4]. As a general rule, when or-
ganisms have multiple “good-enough” strategies to procure food, sur-
vive and procreate, the energetically cheapest strategy usually wins. In
this context, Nature's evolved solutions can be succinctly expressed by
the energy-minimalization paradigm of establishing “maximal diversity
from minimal inventory” [2].

One general principle of this maximal diversity-from-minimal-in-
ventory paradigm is that there is a limitation in degrees of freedom in
order to achieve a desired function while maximizing precision, stabi-
lity and reproducibility – all at minimal metabolic cost to the organism.
An interesting example illustrating this can be found for joint move-
ment in the book Mechanical Design in Organisms [5]. The bones com-
prising any diarthrodal joint are remarkably incongruent, so much so
that a dry, lifeless specimen can be effortlessly disarticulated – it is in an
unstable state of having unlimited degrees of freedom. However, in its
hydrated living state, a functional joint has a limited range of

movement restricted by its surrounding soft connective tissue compo-
nents (joint capsule, ligaments, fasciae) such that only a functionally
appropriate, stable and reproducible range of movement is allowed and
facilitated by the muscles. The same principle is observed in the
pruning of neural connections that originally form in excess [6], or in
the constructive regression of embryonic bone patterning that begins as
an overconnected network of redundant elements (trabeculae), the
majority of which are destined to be removed [7,8].

Given this context of Nature's optimized and energy-minimized
designs, we present here a concept of skeletal mineralization where a
convergence of new findings on the regulatory mechanisms underlying
vertebrate mineralization allows us to present the Stenciling Principle for
biomineralization. The stenciling principle is developed from concepts
initially presented by W. Neuman, H. Fleisch and G. Russell. It invokes
that instead of actively supplying requisite mineral ions with precision
to a desired site of mineralization in the extracellular matrix – a process
which would be environmentally dependent, metabolically expensive,
and difficult to confine – there are mineral ions that i) are abundant and
ubiquitously available both systemically and locally, ii) are generally
prevented from precipitating as a solid mineral phase, or are stabilized
as amorphous mineral precursor phases, by systemic and local miner-
alization inhibitors, and iii) are locally permitted, only in the extra-
cellular matrix of skeletal/dental tissues, to precipitate (and crystallize)
as mineral following the actions of local enzymes to degrade these in-
hibitors of mineralization. This we refer to as the Stenciling Principle for
skeletal and dental mineralization. Under normal physiologic condi-
tions, this principle assumes (and overlays onto) appropriate mineral
ion abundance and homeostasis, and the requisite establishment of an
appropriately assembled extracellular matrix (Fig. 1).

Fig. 1. Induction and regulation of mineralization in the skeleton. While relatively little is known about how mineral is induced/nucleated in bone tissue other than
there being a requirement for appropriate levels of mineral ions (Ca and Pi) and a collagen fibrillar scaffold, substantial progress has been made in understanding the
subsequent regulation of mineralization. Release-from-inhibition arises as a common theme, whereby inhibition of mineralization by small molecules such as
pyrophosphate (PPi), and by larger negatively charged and intrinsically disordered SIBLING proteins such as osteopontin (OPN), is mitigated by their enzymatic
degradation. Such a normal physiologic process – to remove mineralization inhibitors to allow the propagation of mineralization in healthy bone – can be readily
appreciated by the failure of these pathways in several osteomalacic diseases where inactivating mutations in the genes for these inhibitor-degrading enzymes result
in debilitating accumulation of inhibitors which leads to soft (hypomineralized) bones and teeth. This enzyme-substrate relationship locally regulating mineralization
in the extracellular matrix has been well-described for hypophosphatasia (substrate is PPi; enzyme is tissue-nonspecific alkaline phosphatase, TNAP, TNSALP, ALPL)
and X-linked hypophosphatemia (substrate is OPN; enzyme is phosphate-regulating endopeptidase homolog X-linked, PHEX). Other major potential determinants of
mineralization with less defined roles include matrix vesicles, polyphosphates and citrate. ENPP1, Ectonucleotide Pyrophosphatase/Phosphodiesterase 1; ANK
(ANKH), Progressive Ankylosis Protein Homolog/Human; MEPE, Matrix Extracellular Phosphoglycoprotein; SIBLING, Small Integrin-binding Ligand, N-linked
Glycoproteins; asterisks, accumulation of unmineralized extracellular matrix in osteomalacic bone.
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2. Mineral in bone

In 1690, Clopton Havers first identified the basic components of
bone as “fixed salt” (mineral) and “earth” (organic matter) [9]. How-
ever, it was not until the middle of the 20th century – with the advent of
X-ray diffraction and electron microscopy – that scientific debate about
the ultrastructure of bone began in earnest when apparently con-
troversial descriptions of the crystalline habit of bone mineral (apatite)
were reported. At that time in the early 1950s, bone crystals were de-
scribed as being either rod- or needle-shaped as based on X-ray dif-
fraction (XRD) studies [10,11], or as larger-sized, platelet-shaped
crystals with imperfections and substitutions at their periphery, as
based on early transmission electron microscopy (TEM) observations
[12,13]. Soon thereafter in the mid-1950s, Fernandez-Moran and En-
gström again reported on a needle-shaped morphology for bone mineral
apatite aligned with collagen as based on TEM observations of diamond
knife-cut, ultramicrotome sections of plastic-embedded bone [14]. They
noticed that nano-sized needles of mineral also formed aggregated
stacks referred to as flakes, with a regular spacing of several nanometers
which extended cross hundreds of nanometers. This was followed by
observations from Glimcher describing lathe-like, nonstoichiometric
and slightly bent crystals, intimately associated with interstitial water –
from this he suggested an alternative notion of bone mineral crystal
morphology, this being that the apparent needles could in fact be thin
platelets viewed edge-on [15]. The difficulty of visualizing platelets
face-on (en face) was explained by their very thinness, where their
electron-lucency resulted in a lack of contrast when imaged by TEM.
Other TEM observations by Nylen and colleagues around this time
demonstrated highly aligned mineral crystals in the gap/hole zones of
collagen fibrils often in register across multiple collagen fibrils [16].
Following this, work by others provided evidence for an inherently
disordered and hydrated phase of bone mineral described as amorphous
calcium phosphate (ACP) [17], and also described was the mineral
phase octacalcium phosphate [18], with both supposedly being stabi-
lized by noncollagenous organic and inorganic molecules.

In the mid-1980s, Weiner and Traub developed the idea that mi-
neral crystallites exceed the dimensions of single collagen fibrils, in
accordance with observations made earlier [15,19]. Crystallites were
described as being within the grooves of several collagen fibrils and
aligned in register, and they developed further the notion that main-
taining specimen hydration is a key requirement for a true re-
presentation of both organic and inorganic material in bone [20]. In
1989, Weiner and Traub described crystallites of mature bone growing
out of their collagen fibril gap-region confinement to become confluent
with adjacent mineral particles, and they also reported on a striated
pattern in individual crystallites [21], which was in agreement with the
earlier studies [12]. Landis et al. in 1991 presented the notion that
mineral was associated with both the collagen fibril gap region and its
surface using mineralized turkey leg tendon as a model for in situ mi-
neralization of collagen fibrils [22]. In the mineralizing turkey leg
tendon, a whisker-like crystallite morphology was reported, along with
larger mineral aggregates bridging neighboring collagen fibrils, and the
platelet character for the crystallites was again maintained by the idea
of their limited visibility depending upon their orientation with respect
to the electron beam of the microscope.

Around the same time, in the 1970s and 1980s, the concept of
precise collagen crosslinking by nonreducible, aromatic covalent bonds
was demonstrated and validated through studies by Eyre and colleagues
who were able to locate exact sites of crosslinks in collagen using
chromatographic methods [23,24]. This was an important development
at the time, leading to the concept of integrated, robust arrays of col-
lagen where crosslinked fibrillar networks of structured collagen could
form extended three-dimensional assemblies creating a sturdy extra-
cellular matrix. In 1992, Traub and colleagues conducted a TEM study
of mineralization in young turkey leg tendon and described a needle-
shaped habit for the crystallites that was localized to the gap regions of

collagen fibrils and presumably nucleating specifically in the vicinity of
the so-called e-band of collagen – a charged concave site of the gap
region [25]. A few years later, Weiner et al. [26] published a compre-
hensive, integrated “rotated plywood” model for mineralized bone ex-
tracellular matrix describing mineral platelets located within collagen
fibril arrays with the flat aspect of the platelets exhibiting alternating
orientations – parallel or perpendicular – to the collagen array planes,
in a type of coiling configuration. Meanwhile, Prockop and Fertala in
1998 demonstrated a tip-elongation pattern for collagen fibrillogenesis
whereby the addition of triple helices occurs in a super-helical fashion
[27]. In the 2000s, Orgel demonstrated the inherent local instability of
the collagen helix by mapping electron density and by X-ray diffraction
[28,29], writing that the e- and d-bands of the gap region might par-
ticularly favor interaction with noncollagenous protein species [30].

More recently, as TEM and scanning TEM (STEM) tomography used
in conjunction with focused-ion beam (FIB)-prepared specimens be-
came increasingly more available and used for bone work throughout
the early 2000s, still no general consensus had been reached regarding
the habit/morphology of bone mineral. One idea that emerged from
looking at postmortem bone was that mineral morphology changes as
the organic material decays after death, leading to larger size and
confluence of the crystallites, implying that there is an optimized limit
to crystallite size in living bone that is a prerequisite for normal bone
structure and function in vivo [31]. Related to this is one of the most
significant and elegant recent discoveries (in our view) regarding bone
ultrastructure – the study by Bertinetti et al. in 2015 [32] highlighting
the role of structural water to osmotically maintain pre-stress in bone
tissue. In brief, the notion here is that the crosslinked collagen mesh-
work has limited extensibility and incorporates highly hydrated, non-
collagenous organic molecules, including negatively charged, osmoti-
cally active small proteoglycans. Bound water effectively contributes to
the tensile pre-stress exerted on the crosslinked network of collagen
molecules, this being in the range up to 80 MPa. It is important to
realize that bone mineral crystallites nucleate and grow within a con-
fined and osmotically crowded environment, thus being under com-
pression. Indeed, this pre-stress appears to be a successful strategy of
Nature for providing a safe biomechanical environment in which dis-
crete structural tissue/material components and their assemblies can
each be left to perform their individual functions at optimal capacity
[33] – say for example, like elements in bone that resist compression
(mineral) and tension (crosslinked extracellular matrix), or similar
elements in wood resisting compression (lignin) and tension (cellulose)
[34]. The pervasive mineral phase presumably impregnates this pre-
stressed environment as it forms, by gradually replacing some of the
structural water.

3. Composition and structure of the extracellular matrix in bone

Discussing the composition of the extracellular matrix of bone is
essentially impossible without relating it to the context of scale of ob-
servation [35]. Here, the discussion will be limited to lamellar bone –
the most common type of bone in the skeleton of a mature large ver-
tebrate such as humans. Starting at the nanometer level, it is possible to
discriminate between the organic components, inorganic components
and water; however, this distinction into three broad categories is an
oversimplification for the following reasons. Firstly, the organic phase
is an overarching umbrella term covering myriad organic components,
each of which provides a unique function. Collagen is the most abun-
dant matrix protein by mass, based on the very large size of these
complex, fibrillar structural components, but in terms of molar
amounts, noncollagenous proteins are roughly as equally abundant as
collagen [36]. Noncollagenous proteins are often highly phosphory-
lated usually at serine residues (phosphoserine), as mediated mainly by
the kinase FAM20C [37,38], and they bind calcium [39,40] and inter-
face with both mineral and other organic components [41–44]. They
also exist in covalently crosslinked forms (as mediated by the enzyme
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tissue transglutaminase 2, TG2) that might modify monomer function
and at the same time provide new polymeric functions such partici-
pating in adhesion/cohesion in a way that makes the extracellular
matrix more robust [45]. In some cases they reside not only in bulk
bone matrix, but at cell-matrix interfaces such as when a cement line/
plane is established by osteoblasts during the reversal phase of a bone
remodeling cycle, or at the osteocyte/lacuno-canalicular network in-
terface to form a thin planar structure termed the lamina limitans
[46,47]. At these cell-matrix interfaces, cell integrins may bind ligands
in these matrix proteins – such as the RGD tripeptide – to provide
outside-in signaling from the extracellular matrix to the cells. The best-
studied group of noncollagenous phosphoproteins in bone is called the
SIBLING protein family (small integrin-binding ligand N-linked glyco-
proteins) [42,48], this being part of a larger group named the SCPP
proteins (secretory calcium-binding phosphoproteins) [49].

In terms of the inorganic phase of bone, mineral has been discussed
in the preceding section, where mounting evidence implies that prior to
carbonato-apatite crystallization there may in addition exist a combi-
nation of mineral phases including octacalcium phosphate and amor-
phous calcium phosphate, as will be also discussed later. With phos-
phate (and to some extent carbonate) being a central feature of both the
organic and inorganic phases in bone, and because of the nanoscale
dimensions of bone crystallites interfacing with similarly sized protein
moieties – all in the presence of structural water – boundaries are
blurred [50]. Indeed, there may be shared (integrated) ternary com-
plexes involving protein/mineral, calcium and phosphate groups that
define the very nanoscale interface between organics and inorganics
that is so central to the extraordinary mechanical properties of bone.
Overlain onto this interfacial and interphase integration complexity is
the fact that SIBLING proteins are remarkably intrinsically disordered
[51–53] and highly negatively charged. They have vast stretches of
negative charge arising from a preponderance of carboxylate-rich,
acidic Asp and Glu residues, and from the organic phosphate groups
from phosphoserines, all of which can bind large amounts of calcium,
either in solution or as part of the mineral's crystalline lattice surface.
Likewise, electrostatic interactions occur between collagen and small
proteoglycans that are also negatively charged and highly hydrated
(SLRPs, small leucine-rich proteoglycans), and can interact with posi-
tively charged cations [54]. Finally, both organic and inorganic con-
stituents have a surface layer of bound water molecules that fulfils an
often-overlooked structural role, being far more than simply a diffusion
and reaction medium [55–61].

At the next level – the submicrometer scale – collagen forms ordered
and disordered arrays in lamellar bone [19,62,63]. The ordered col-
lagen fibrils of the extracellular matrix form alternating 3D assemblies
arranged as planar arrays of gently twisted bundles [64], to render the
extracellular matrix more isotropic at the micrometer scale. Both or-
dered and disordered collagen arrays mineralize to a similar extent, but
with the additional space between the collagen fibrils in the disordered
regions, this interfibrillar compartment is likely richer in non-
collagenous proteins, proteoglycans and small molecules, and collec-
tively has been described as “interfibrillar ground matter” or histori-
cally “amorphous ground substance” because of its granular appearance
by early-era light microscopy.

At the micrometer level, in all vertebrates except certain teleost fish
[65], the osteocyte cellular network enters into the 3D landscape. This
network is a vast cellular and dendritic system allowing direct com-
munication to cells at the bone surface or in distant tissues, with pri-
marily a mechanosensing [66] and endocrine function [67]. Likely it is
also involved in mobilizing calcium (and phosphorous) from its en-
ormous surface area lining the lacuno-canalicular network in which the
osteocyte cells and their cell processes lie [68–70]. While the osteocyte
network is naturally integrated within alternating order-disorder la-
mellar arrays of mineralized matrix, cellular bodies with their long
dendritic projections are directly engulfed within the feltwork of dis-
ordered collagen fibrils. Such disordered “padding” around osteocytes

and their processes may vary in thickness from the usual 100–200 nm
to substantial volumes of up to 1 μm in the vicinity of an osteocyte cell
body [71]. At the level of hundreds of microns, concentric lamellar
assemblies of compact bone called osteons (also called Haversian sys-
tems) can be distinguished, as well as overlapping lamellar packets that
compose individual struts of trabecular bone, all resulting from the
bone remodeling activity initiated by osteoclasts. Newer osteons cut
into older osteons of previous generations (then called interstitial os-
teons), and newer lamellar packets overlap older lamellar packets,
collectively forming a characteristic patchwork appearance. The inter-
faces between these entities are called cement lines/planes. Cement
planes are rich in noncollagenous protein – notably osteopontin [36,46]
– and the regularity of their profiles varies with the state of the matrix
organization at the moment osteoclastic resorption ceased. An im-
portant feature of cement planes is that biomechanically under loading,
they allow for microcrack deflection, allowing for energy dissipation
[72]. During their initial formation, the proteins there – including os-
teopontin with its integrin-binding RGD ligand and other cell adhesion
ligands – likely allow for cell dynamics and cell adhesion at the early
bone formation/replacement stage after resorption by osteoclasts [36].
Of note in this context, lamellar structures are generally the same in
compact and in trabecular bone [73]. However, in a typical osteon of
about 200 μms in diameter, there would usually be only one cement
plane surrounding its entire cylindrical shape, whereas in a single tra-
becula of the same dimensions there would be numerous cement planes
with their collective surface exceeding that of an osteon.

At the macroscopic anatomical level, the composition and structure
of bone achieves another tier of intricacy as it interfaces with soft
connective tissues to form entheses at ligament and tendon insertions,
sutures, symphyses, growth plates and their vestiges, articular cartilage
at joints and cartilaginous elements at many other locations, middle ear
attachments, vascular and nerve canals, and marrow – all of which
wholly make up a functional skeleton. According to a recent count of
the nested tiers of bone organization from crude components to entire
organismal frames, the organization of bone has 12 levels of hierarchy
[74].

4. Mineralization mechanisms in bone

Mineralization of skeletons (including teeth) is a remarkably robust
process in biology whose importance is underscored by the fact that
there is almost always some degree of mineralization that occurs re-
gardless of the severity of any particular disease and regardless of the
gene mutations involved. Even in the most severe cases of osteomalacic
diseases – like for example in perinatal and infantile hypophosphatasia
– there is generally nevertheless some amount of skeletal mineraliza-
tion. Countless spontaneous, chemically induced and transgenic mouse
models having a defective mineralization phenotype still maintain some
degree of mineralization. This underscores the evolutionary importance
of biomineralization since Cambrian times, and indicates that Nature
uses multiple ways to achieve mineralization such that a failure in one
pathway often still is compatible with life, at least in higher vertebrates.

At the very core of vertebrate mineralization is the requirement for
a suitable extracellular matrix – a scaffold so to speak – that is pre-
formed and primed to be receptive to mineral deposition [75]. Not
surprisingly for mineralized tissues (since indeed they are specialized
connective tissues), secretory activity from resident cells creates a col-
lagenous scaffold (with many other components) which a priori pre-
scribes a fabricated template that will ultimately accrue its mineral.
Heterogeneous mineral deposition events in bone occur at discrete lo-
cations within, at the surface of, and between collagen fibrils [76,77].
Thus, the beginning of the mineralization storybook in vertebrates, as
we describe below for bone, starts with a collagen-based extracellular
matrix whose composition and structure essentially remains the same
throughout its chapters, with of course some variations depending upon
the bone tissue type, location and age (Note: an exception to this is
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tooth enamel, being of epithelial cell origin, which still has an extra-
cellular matrix – but not collagen – during its development, an organic
matrix which is almost entirely removed through the action of enzymes
during its maturation prior to tooth eruption). Beyond systemic mineral
ion homeostasis and renal phosphate wasting pathways, and other
systemic factors influencing mineralization that are covered elsewhere
by many fine reviews [78–84], we begin here by briefly outlining three
concepts by which early mineralization in bone is thought to be regu-
lated locally in the extracellular matrix: by matrix vesicles, by amor-
phous mineral precursors, and by enzymatic degradation of miner-
alization inhibitors in the extracellular matrix. These concepts
governing the regulation of mineralization to be discussed below are
depicted schematically in Fig. 2.

4.1. Matrix vesicles

One way to mineralize a vertebrate extracellular matrix appears to
be through the cellular release (shedding/blebbing) from the plasma

membrane of small (100–300 μm diameter) so-called matrix vesicles
[85–88,90,91]. These osteoblast/osteocyte-shed matrix vesicles are not
exosomes (which are smaller) destined for some remote location, but
rather they are distinct entities that “seed” locally the extracellular
matrix with phospholipid bilayer-bounded, roughly spherical packages
of mineral ions and enzymes that provide the molecular machinery to
induce a cascade of compartmentalized mineralization events. These
events ultimately produce apatitic crystals within the interior of the
vesicles. Additional growth and elongation of these crystals (at this
point isolated from the extracellular matrix by the bounding mem-
brane) occurs within the vesicle until the abundance and size of the
crystals rupture the membrane, by way of biomineralization analogy
much like the hatching of a chick (with its apatite-containing skeleton)
from its calcitic shell. Another possibility for this rupture is that the
membrane itself biochemically degrades through its own mechanisms
at roughly the same time that the crystals are ready to be presented to
the extracellular matrix. In either case, the net result is that calcium and
phosphate ions come together within the vesicle to form crystalline

Fig. 2. Factors regulating extracellular matrix mineralization in the skeleton. Extracellular matrix in bone contains abundant crosslinked and branching collagen
fibrils, noncollagenous proteins (notably the SIBLING protein family that includes the mineralization inhibitor osteopontin, OPN), small proteoglycans (SLRPs, small
leucine-rich proteoglycans), growth factors, serum proteins, and many small bioactive molecules (such as citrate, and mineralization-inhibiting pyrophosphate, PPi).
With appropriate levels of mineral ions, and with tissue-specific local expression of genes by osteoblasts and osteocytes to produce mineralization inhibitor-degrading
enzymes (such as TNAP to degrade PPi, and PHEX to degrade OPN), incipient mineralization events and their progression are shown from top to bottom. No one
mechanism accounts for this mineralization pattern – multiple pathways contribute to forming mineralized bone tissue where hierarchical and intertwining fractal
organization of matrix and mineral are established. Gently twisting crossfibrillar crystallites reside in different extracellular matrix compartments, being either intra-
or interfibrillar [74]. Through either broad heterogenous precipitation of mineral between, along and within collagen fibrils, or through seeded matrix vesicle
depositions of mineral at specific sites in the matrix, bone mineralizes continuously and extensively throughout the organic matrix. Rather than directly nucleating
and growing through classical crystal growth mechanisms, it is now widely thought that mineral forms and is sculpted at the nanoscale through the continuum of a
precursor pathway. This pathway involves mineral ion accretion, sequestration, condensation, stabilization, and fluidic transport as an amorphous liquid precursor
(PILP process, polymer/peptide-induced liquid precursor), finally ending with pre-stressed (often curved) carbonate-substituted apatite crystallites permeating all
compartments of the extracellular matrix. Crystallites are inhomogeneous and contain an ordered, crystalline lattice-structured core several nanometers thick
surrounded by a more disordered and dynamic hydrated superficial layer (~0.8-nm-thick) of mineral and counter ions, disordered mineral, and a variety of small
molecules and organic moieties. This schematic is not drawn to precise scale. TNAP, Tissue-nonspecific alkaline phosphatase (also often abbreviated as TNSALP,
ALPL). PHEX, Phosphate-regulating endopeptidase homolog X-linked.
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apatitic mineral that is then exposed to the extracellular matrix and its
constituent regulatory biomolecules. Such a seeding approach for bulk
bone mineralization has the advantage of precisely placing dispersed
mineral packages at exact locations with the extracellular matrix from
which mineralization may subsequently propagate in all directions
throughout the matrix.

In the developing tooth, during the formation of mantle dentin at
the dentino-enamel junction, targeted release and placement of matrix
vesicles by newly formed odontoblasts initiates at precise locations in
the extracellular matrix the very first mineralization of the tooth
[92–95], this mineralized mantle dentin serving as a hardened substrate
upon which enamel and cementum formation and mineralization sub-
sequently occur. Matrix vesicles are difficult to discern in the extra-
cellular matrix of bone using conventional light and electron micro-
scopies, and they can readily be confused with cross-sections of cell
projections from osteoblasts and osteocytes which can be about the
same size. To visualize their numbers and distribution in bone more
clearly, Takano and colleagues used bisphosphonate (etidronate; 1-
hydroxyethylidene-1,1-bisphosphonate, HEBP) loading to block bulk
mineralization in rat bone, and the extent, distribution and spacing of
matrix vesicles then became readily apparent by conventional trans-
mission electron microscopy [96]. Of note from this Takano et al. study
was that crystals of apatite still formed within the matrix vesicles (the
inhibitory bisphosphonate apparently was excluded from the vesicular
contents), but once exposed to bisphosphonate after vesicle membrane
rupture, they failed to propagate additional mineralization under these
experimental conditions. Under normal physiological conditions, once
matrix vesicles rupture, the mineral they contain then falls under the
influence of extracellular matrix molecules that will further guide mi-
neralization events that were initiated independently within the ve-
sicles [97,98], thus linking the two processes. Important enzymes re-
lated to mineralization and residing at the matrix vesicle membrane
include PHOSPHO1 acting internally to release phosphate ions for in-
itial mineral deposition within the vesicle, and TNAP which degrades
inhibitory PPi and OPN outside the vesicle – all of which promote ex-
tracellular matrix mineralization in the vicinity of the vesicles [97,99].

4.2. Amorphous mineral precursors

As opposed to the idealized processes and structures represented
strictly by chemical formulas, bone mineral forms, grows and matures
in an exceptionally interactive and crowded aqueous environment of
structural and regulatory proteins, peptides, amino acids, proteogly-
cans, polysaccharides, small organic and inorganic molecules, and mi-
neral ions. In such a crowded extracellular aqueous milieu, even water
is a structural component rather than just a medium. Thus, the only
possible scenario for crystal formation is through heterogeneous nu-
cleation, and once started, its trajectory is tightly controlled by various
regulatory adjustments and deviations from a classic precipitation path
as would otherwise occur abiotically.

The first notions on inconsistencies between the properties of the in-
organic phase of bone and classic crystallization theory appeared soon after
the identification of the mineral as being a carbonate-substituted apatite by
McConnell in 1952 [100]. Neuman and Neuman [101] reported that bone
mineralization proceeds through a metastable phase, which was quantified
and identified as being amorphous calcium phosphate (ACP) [102,103] and
octacalcium phosphate [104]. The very fact that bone mineral likely forms
through disordered (as apposed to crystalline) precursors is presumably a
direct consequence of the sequestration and stabilization of mineral ions by
diverse organic moieties. Such molecules include negatively charged phos-
phorylated peptides and proteins (often intrinsically disordered [105,106])
with abundant Asp, Glu and phosphoserine content, often clustered together
into acidic amino acid sequence stretches such as polyAsp and ASARM – the
best-studied example of this being the SIBLING phosphoprotein OPN and its
peptides [36,41,107–109]. Circulating proteins that infiltrate the tissue
fluids of mineralized tissues also have mineral ion-binding properties and

likewise may influence mineralization processes – the best-studied example
being fetuin-A [110,111]. Here, an analogy can be drawn to similar features
and function for the phosphoprotein casein as found in breast milk, thought
to prevent phase separation (mineralization) in this calcium-rich fluid (but
in this case lacking an extracellular matrix to mineralize) [112] – of note,
OPN is also abundant in milk and binds calcium ions with high affinity
[40,113–115]. In mineralized tissues, such organic sequestration of mineral
ions can result in a spectrum of nonstoichiometric mineral polymorphs.
There is evidence that the polymorphs do not necessarily appear in a uni-
directional sequence according to the extent of order as described by Ost-
wald's ripening rule, but rather, depending on the conditions, the precursor
may first dissolve altogether in order to progress towards a more-crystalline
ordered phase [116].

In the crowded extracellular environment of bone, almost every
component has been reported at one time or another to stabilize the
amorphous phase. For example, the crosslinked collagen that forms
continuous, covalently bound assemblies stabilizes ACP by template
confinement [117]. Finite-element simulation of ion diffusion has
shown that constricting the volume of reaction to a narrow gap less
than 1-μm-thick noticeably impedes ion diffusion and results in a local
depletion zone of ions around the growing crystallite [118,119]. Thus,
the resulting crystal size is quite limited in the simulation model;
however, the size-capping effect might be even more pronounced in
reality in bone because the water available within the confined space is
in fact partially structured by the charged organic moieties.

In addition to there being space limitations in the extracellular matrix of
bone, the reactive agents contained therein are rich in carbonate/bicarbo-
nate ions that make up to 5% of the weight of bone [101]. The presence of
carbonate on the one hand stabilizes ACP by maintaining local depletion
with respect to phosphate [120], while on the other hand, bicarbonate is a
product of carbonic anhydrase, a ubiquitous and highly efficient/fast en-
zyme used by cells to rapidly control pH in their environment [121]. While
the well-known utilization of low pH for bone mineral dissolution during
resorption by osteoclasts (and as another example, during avian eggshell
thinning induced by similar cell activity in the chorioallantoic membrane),
new evidence points to a drop in pH as being responsible for activating
available calcium ions to facilitate the transition between two hydrated
phases of bone mineral – from ACP I to ACP II [122]. This apparently occurs
through preferential dehydration of the hydration shell of calcium ions, and
to a lesser extent of phosphate ions. Jiang et al. [123] also confirmed that in
an ACP-saturated environment under constant temperature, a decrease in
pH facilitates the transition of ACP to apatite crystallization by liberating
calcium ions from their hydration shells. The same authors observed that
under the same conditions, the addition of acidic amino acid polymer had
an opposite effect – prolonging the crystallization time of the ACP-to-apatite
transition. Interestingly, while calcium activity is sensitive to the presence of
protons, the addition of polyanionic2 polymer may alter ionic calcium ac-
tivity and stabilize ACP by other mechanisms [124]. The polymer-induced
liquid precursor (PILP) process generates a relatively long-lasting, me-
tastable calcium- and phosphate-containing amorphous phase of seques-
tered ion clusters that infiltrates into the intrafibrillar confined space of a
collagenous template, and eventually loses a certain proportion of asso-
ciated water. In this process, the phase undergoes an amorphous-to-crys-
talline transformation to acquire more thermodynamically stable long-range
crystalline order [125,126]. The appeal of this theory is that it explains
many anomalous features of bone mineral type and organization in the
mineral-collagen assembly. These include for example, i) co-alignment of
elongated crystallites having enormous collective surface area within the

2 The term “polyanionic polymer” is technically a more precise term than
“acidic polymer” because at the pH of biological systems, or in corresponding in
vitro models, a significant proportion of the aforementioned polymers would be
deprotonated. In fact, it is the net negative charge of an anionic constituent, and
not the collective activity of protons, that exerts the structuring action on ions
and water dipoles.
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matrix [127], ii) the orientation of the c-axis with the longest dimension of
the crystallites [10,126,128], iii) the curvature of individual crystals
[35,74,129,130], and iv) the fact that upon deproteinization, bone speci-
mens do not disassemble but they retain their size and shape [126,131,132].

The PILP concept, originally described by the Gower lab using recon-
stituted collagen [133,134], has been demonstrated in vitro using cryo-TEM
to capture the presence of nanoparticle clusters lining up to enter the col-
lagen fibrils at the gap-zone regions [135]. This correlates with cryo-SEM
observations captured in situ in forming mouse bone [136], which revealed
amorphous mineral-bearing globules fusing onto collagen fibrils in the os-
teoid extracellular matrix. This also relates to other in vitro studies showing
that polyelectrolyte (polycarboxylic acid) covalently bound to collagen ca-
ches chain-like aggregates of mineralization precursors along the fibrillar
surface [137], and that both short- and long-range interactions involving
electroneutrality and osmotic equilibrium need to be simultaneously ba-
lanced [220], all of which may provide driving forces for infiltration of
mineral precursors into the water compartments within collagen fibrils. Of
note, in the biogenic mineralization pathway occurring through amorphous
precursors, the chronologic phase transition remains incomplete – even
when precursor crystallization occurs within the core of mineral formations,
their periphery remains disordered, nonstoichiometric and labile [50], and
rich in bound water [61], substitutions [138], associated organic citrate
[139], and inorganic molecules [140]. This labile shell structure apparently
persists on the surface of the crystalline core and participates in metabolic
reactions [141]. With bone maturation (and to a larger extent with diag-
enesis), the proportion of the labile peripheral disordered phase decreases,
and, overall, mineral becomes more inert [101,141]. The stochastic bone
remodeling that continues throughout life aims at recycling and renewal of
bone mineral (and also matrix of course), thus keeping mineral interfaces
labile and metabolically active, not only for the sake of continuity of che-
mical processes, but also for maintenance in the optimal range of the

mechanical properties of bone [72,142].

4.3. Enzymatic degradation of mineralization inhibitors in the extracellular
matrix

Beyond the earliest mineral nucleation mechanisms which remain
poorly understood in bone, guidance/regulation of mineralization, once
initiated, seems to involve the participation of a number of enzymes
that degrade well-known inhibitors of mineralization. Without these
enzymes, or with decreases in their activity, osteomalacia and odon-
tomalacia set in, these terms referring to a class of disease that leads to
soft bones and teeth (hypomineralization). Specific examples of osteo-
malacic diseases discussed below include hypophosphatasia [143–145]
and X-linked hypophosphatemia [146–150]. Previous in vivo work done
primarily in transgenic mouse models, and more recent work in humans
through successful clinical trials and drug development with products
now on the market, have now clearly established the importance of
these enzyme-mineralization inhibitor/substrate relationships acting in
the extracellular matrix. Here we highlight two of these relationships,
that between the ectoenzyme tissue-nonspecific alkaline phosphatase
(TNAP, TNSALP, ALPL) and the inhibitor/substrate pyrophosphate
(PPi), and that between the phosphate-regulating endopeptidase
homolog X-linked (PHEX) and the inhibitor/substrate osteopontin
(OPN, SPP1 - secreted phosphoprotein 1). Each relationship relies upon
enzymatic inactivation of its substrate, a kind of “inhibiting the in-
hibitor” by its degradation, so to speak. Building upon foundational
work by Neuman and Fleisch [151] on inhibition of mineralization in
supersaturated solutions of mineral ions, we also discuss below the
notion that there may be a kind of coarse- and fine-tuning of miner-
alization by the sequential actions of these enzyme-substrate relation-
ship pairs, respectively (Figs. 1–3).

Fig. 3. Pathways regulating mineralization in the skeleton. Complex, interdependent, and integrated pathways converge and diverge to regulate mineralization in
bone. Control of mineralization resides in the combined actions of systemic circulating factors (principally hormones called phosphatonins), and local factors in the
extracellular matrix of bone (principally enyzme-substrate interactions). Together, they respectively determine mineral ion homeostasis to create appropriate cir-
culating serum ion levels in the blood, and establish the temporospatial pattern of mineralization locally in the extracellular matrix of the skeleton. DMP1, Dentin
Matrix Protein 1; MEPE, Matrix Extracellular Phosphoglycoprotein; ASARM, Acidic Serine and Aspartate-Rich Motif; PHEX, phosphate-regulating endopeptidase
homolog X-linked; OPN, osteopontin; FGF23, Fibroblast Growth Factor 23; FGFR1, Fibroblast Growth Factor Receptor 1; KLOTHO; NPT2, Type II Na-Pi Co-trans-
porter. Modified from [168].
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The first-known and widely studied potent mineralization inhibitor
with relevance to bone biology was pyrophosphate, with the first
seminal studies being performed in the 1960s by the groups led by
Neuman, Fleisch and Russell. Pyrophosphate (PPi) – composed of two
phosphate molecules linked by an oxygen bond – is found widely in
Nature, and pivotally regulates physiologic and pathologic miner-
alization by acting as a potent inhibitor of crystal precipitation, growth,
and dissolution [152–156]. Local tissue concentrations of PPi are con-
trolled by a number of regulatory enzymes and transporters, notably
ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) and the
progressive ankylosis protein (ANK) – these two proteins can increase
PPi locally in tissues, although the role for ANK in this process is less
clear than it is for ENPP1 [157]. ANK is a multi-pass transmembrane
protein that transports intracellular PPi into the extracellular space
[158–160]. ENPP1 increases extracellular PPi by hydrolysis of nucleo-
tide triphosphates [159]. Countering this – being highly expressed by
the resident cells of bones and teeth – the ectoenzyme TNAP hydrolyzes
PPi to release two phosphates [161], thus providing a balancing me-
chanism to control the concentration of this potent mineralization in-
hibitor (and also the Pi:PPi ratio) locally in the extracellular matrix of
bone. This balance is critical for proper skeletal mineralization [162].
Of note, TNAP can also remove organic phosphate side-groups from
phosphorylated OPN, reducing its mineralization-inhibiting function
[152,163]. Thus, in the extracellular matrix of bone, the enzymatic
degradation of PPi by TNAP (together with the dephosphorylation of
OPN and potentially of other matrix proteins by TNAP) controls the
Pi:PPi ratio in favor of mineral deposition. Deficiency of TNAP activity
leading to extracellular and circulating accumulations of inhibitory PPi
characterizes the rare osteomalacic/odontomalacic bone and tooth
disease hypophosphatasia (HPP), a heritable disorder presenting hy-
pomineralization of the skeleton and dentition [164–166,168].

Clinical manifestations of hypophosphatasia vary from stillbirth
(where there is almost no skeletal mineralization) to tooth loss being
the only symptom. Besides the osteomalacia (osteoidosis) in HPP, the
typical and striking oral manifestation of hypophosphatasia occurring
early in life is premature and atraumatic loss of rooted primary teeth.
This occurs as a result of defective mineralization caused by the accu-
mulation of PPi in tooth cementum and alveolar jawbone leading to a
weak periodontal ligament attachment of the tooth in its alveolar socket
[166,169]. Derived from these findings and pre-clinical work in mice by
the Millan, Whyte and McKee groups working closely with Enobia
Pharma in Montreal (acquired by Alexion) in the late 2000s [170,171],
additional clinical work using the same mineral-targeting (polyAsp,
D10 decapeptide) form of TNAP (asfotase alfa) as an enzyme-replace-
ment therapy in HPP patients confirmed this enzyme-substrate action in
humans [144]. Many countries worldwide since 2015 have now ap-
proved the use of this mineral-binding form of TNAP for HPP therapy.

The first genetic in vivo demonstration of mineralization inhibition
by proteins was the publication by Luo et al. in 1997, describing the
fully penetrant phenotype of massive vascular mineralization in mice
lacking matrix Gla protein (MGP) [172]. However, to date, most in vivo
evidence for the direct inhibition of mineralization by proteins in ver-
tebrates has been obtained from work done on the SIBLING phospho-
protein osteopontin (OPN) [173]. While remarkably OPN-knockout
mice show generally normal skeletal mineralization [174], indeed there
are some locations in these mice that show increased mineralization
and crystallinity [175] as would be expected for the loss of an inhibitor.
One possible explanation for the lack of a major mineralization phe-
notype in OPN-deficient mice may be that the members of the SIBLING
protein family [176] all have many similarities – particularly conserved
calcium- and mineral-binding acidic sequences with abundant Asp and
Glu – and thus there may be built-in protein redundancy for inhibiting
mineralization in this case of the Opn−/− mice. Indeed, the SIBLING
proteins are believed to have arisen from gene duplication events of
SPARC or a SPARC-like ancestor [42], and it would thus be reasonable
to consider that collectively they could replace some of the functions of

OPN in bone, including its mineralization-inhibiting function. In many
other examples of transgenic mice showing osteomalacic hypominer-
alization phenotypes (including TNAP-deficient Alpl−/− mice
[162,177] and Hyp mice [178,179], OPN is invariably upregulated in a
manner that often parallels PPi levels. Thus, we consider that there is a
duality in mineralization inhibition in bone, with PPi and OPN often
working in tandem, and this has led us to propose the enzyme-substrate
Stenciling Principle as summarized in the next section. Prior to this, it is
appropriate now to review the relationship between OPN and the en-
zyme PHEX which degrades/inactivates it.

Inactivating mutations in the initially named PEX gene – later re-
named as PHEX (phosphate-regulating endopeptidase homolog X-
linked) – was identified in 1995 as the cause of the most prevalent form
of inherited rickets in humans, that being X-linked hypophosphatemia
(XLH) [180]. The PHEX gene encodes PHEX protein, an ~86 kDa
membrane-bound zinc-metallopeptidase that belongs to the M13 family
of peptidases and which is expressed predominantly by osteoblasts,
osteocytes, odontoblasts and cementocytes [181–185]. Although assays
to assess PHEX proteolytic activity in vivo are not yet available, it is
clearly evident that the loss of PHEX (or decreased PHEX activity),
underlies the XLH phenotype. In XLH and in the commonly used murine
model of this disease (Hyp mice lacking PHEX), an increase in circu-
lating fibroblast growth factor-23 (FGF23) leads to renal phosphate
wasting [186,187], with low serum Pi levels being a major cause of the
extensive osteomalacia associated with this disease. In XLH, the os-
teomalacia (hypomineralization) causes bones to deform and pseudo-
fracture, and the odontomalacia results in teeth becoming infected,
often requiring their extraction.

Several studies have noted that full-length MEPE and MEPE pep-
tides are increased in XLH/Hyp [188–191], which is consistent with our
demonstration that the MEPE ASARM peptide is a substrate for PHEX
[192]. Another report has described that PHEX protects MEPE from
cleavage [193]. Although biochemical experiments demonstrated that
full-length FGF23 and MEPE are not substrates of PHEX
[188,189,194,195], some synthetic small FRET (fluorescence resonance
energy transfer) peptide sequences derived from these proteins can be
hydrolyzed by PHEX, with distinct catalytic efficiencies [196]. Im-
portantly, we demonstrated that the MEPE ASARM peptide (and the
OPN ASARM peptide and full-length OPN) are efficiently degraded by
PHEX [41,178,192]; for degradation, there is a strict specificity for
residues with negative charge (Asp and Glu) at the P1′ position [196],
and this is a determinant for PHEX action.

Proteins of the SIBLING family have an acidic serine- and aspartate-
rich motif (ASARM) that is highly conserved across species [197,198].
Besides having abundant Asp and Glu, the ASARM peptide contains
serine residues that can be phosphorylated [199–201]. The ASARM
peptide is located in the C-terminal region of all SIBLING proteins,
except for osteopontin, where it is located in the middle of the protein.
In most vertebrates, the ASARM peptide appears to have evolved to
regulate mineralization, extending from eggshell to mammalian bone
[202]. These acidic peptides are generally highly resistant to proteolysis
and are potent inhibitors of bone and dentin mineralization
[41,192,203]. However, the ASARM peptide can be selectively de-
graded by PHEX through multiple internal cleavage sites [41,192], and
thus cleared from the local extracellular matrix environment where
mineralization is required as dictated by high levels of PHEX expression
by osteoblasts and osteocytes (and odontoblasts) [41,178,192].

Following this work showing cleavage of the mineralization-in-
hibiting MEPE and OPN ASARM peptides by PHEX, further attention
was then given to full-length OPN which potently blocks mineralization
[152]. Time-course, enzyme-substrate PHEX-OPN degradation assays
analyzed by mass spectrometry, gel electrophoresis protein profiles of
Hyp bone extracts, immunolabeling of OPN and OPN-fragment accu-
mulation in Hyp mice [178], and bone and tooth dentin extracts from
XLH patients [204], all demonstrated that OPN was a physiologically
relevant substrate for PHEX. The work in Hyp mice and in XLH patient
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biopsies clearly aligned with the notion that accumulated OPN in the
extracellular matrices of bones and teeth in the absence of PHEX was a
local contributing factor to the defective mineralization that occurs in
XLH/Hyp. Remarkable was the finding of an extensive degradation of
OPN over multiple dozens of cleavage sites (up to 5 cleavage sites in the
ASARM peptide [41,178]) that essentially would inactivate such a
protein inhibitor of mineralization in healthy bone where robust mi-
neralization is required. In XLH bone – having decreased/absent PHEX
activity – particularly noteworthy in addition to the generalized in-
crease of OPN in bone was the observation of an abundant accumula-
tion of inhibitory OPN and/or OPN fragments in the osteocyte lacuno-
canalicular system. The overabundance of OPN at this site presumably
functions to inhibit mineralization locally to create the hypominer-
alized peri-osteocytic lesions (POLs, also called halos [204]). In healthy
bone, only a thin coating of OPN is normally found at the osteocyte cell-
matrix interface [36,46] – at the lamina limitans – a matrix protein
structure lining osteocyte lacunae and their canaliculi. The peri-osteo-
cytic lesions are a hallmark characteristic of XLH [205], and such hy-
pomineralized pliant lesions in this disease most certainly adversely
affect the mechanosensing signaling output of the osteocyte network
that results in aberrant bone remodeling. The altered pericellular
composition and mineralization status of the POLs might also influence
FGF23 production by osteocytes.

5. The stenciling principle – a concept for templated stenciling of
mineralization in the skeleton

The concept that mineralization might be a default pathway is not
new, but was suggested by earlier work on the small-molecule pyr-
ophosphate by the Neuman, Fleisch and Russell labs [206], and by work
on matrix Gla protein originally by the Karsenty and McKee labs [172],
and as followed up more recently by the Murshed lab [207,208] and
Hunter and Goldberg labs [209]. While the work on the small-molecule
pyrophosphate extends back to the mid-20th century, genetic evidence
that a protein could act in vivo in a similar inhibitory manner towards
mineralization was only first demonstrated much more recently in 1997
for matrix Gla protein [172]. Whereas the matrix Gla protein work
identified a key inhibitor of blood vessel mineralization, subsequent
work over many years established the importance of osteopontin as an
inhibitor of mineralization in bone, with major contributions on me-
chanisms of OPN action coming from the labs of Boskey [52,199,210],
Giachelli [211,212], Hunter and Goldberg [213–215], Sorensen
[200,216], Millan [162] and McKee [173] using a variety model sys-
tems. Collectively, this work, and the work of others of course, laid the
foundation for the notion of what we call the Stenciling Principle of
mineralization in the skeleton. In this concept, where calcium and
phosphate ions are normally abundant, there is a specific expression

Fig. 4. The Stenciling Principle for mineralization of the skeleton. (A) Given adequate nutrition in a healthy individual, mineral ion homeostasis mechanisms acting
across multiple organ systems results in systemic circulating and tissue fluids rich in calcium and phosphate throughout most tissue compartments. (B) Potential
mineralization events that might readily occur throughout the body from high calcium and phosphate levels are generally inhibited everywhere in all tissues by the
ubiquitous presence of abundant pyrophosphate PPi – a potent, small-molecule inhibitor of mineralization produced by many metabolic pathways. This generalized
organismal inhibition prevents tissues intended to be “soft” from mineralizing as a default pathway, given the high levels of available mineral ions. (C) However, in
the skeleton, the specific expression by cells in bones and teeth of tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) – an enzyme which degrades its
inhibitory substrate pyrophosphate – results in mineralization being precisely “stenciled” at specific, connective tissue sites within the pre-formed extracellular
matrix characteristic of skeletal mineralized tissues. (D) This so-called Stenciling Principle can be extended to the actions of regulatory proteins (such as osteopontin,
OPN) that likewise inhibit/regulate mineralization by sequestering mineral ions (and possibly also by stabilizing an amorphous calcium-phosphate precursor phase)
and by binding to (and thus slowing growth of) established mineral crystals in the extracellular matrix. Compared to the generalized inhibitory action of pyr-
ophosphate, a refinement of mineralization patterns by the sustained action of inhibitory proteins such as OPN might provide a mechanism whereby precise control is
exerted at discrete extracellular matrix locations, including at cell-matrix interfaces [219] (in the osteocyte/lacuno-canalicular system) where mineralization likely
exists in a state of flux. Degradation of inhibitory OPN (thus a release from mineralization inhibition) proceeds through the enzymatic actions of PHEX (phosphate-
regulating endopeptidase homolog X-linked (PHEX) expressed locally by bone and tooth cells.
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pattern of enzymes by cells, at precise locations in the skeleton, that
biologically “stencils” into a pre-formed extracellular matrix loaded
with inhibitors a precisely patterned, inhibitor-degrading dose of en-
zyme to form a mineralized tissue. With such precision, neighboring
connective tissue destined to be soft remains soft, whereas the enzyme-
stenciled regions harden by mineralization to provide the functions of
the skeleton and teeth. The Stenciling Principle does not preclude
multiple levels of “release from inhibition”, as multiple passes (rounds)
may be required having different timings and concentrations of the
active participants. Here, we describe two rounds for release of in-
hibition – the first round being the degradation of inhibitory pyr-
ophosphate by the enzyme TNAP to “kickstart” the process of miner-
alization, and the second round being more subtle and sustained (as
might be expected from a protein-processing event), as a refinement of
mineralization through the gradual degradation of inhibitory OPN by
the enzyme PHEX (Fig. 4). Whether dysregulation of these (or other)
enzyme-substrate reactions affecting mineralization act at ectopic cal-
cification sites remains to be determined, but calcification of ligament/
tendon entheses is common in XLH [217,218], and this seems parti-
cularly worthy of further study.

As the old adage states, “the devil is in the details”. For skeletons,
the key to structural and functional success is in its cell-matrix-mineral
interfaces. For the three major determinants of mineralization – these
being 1) the ubiquitous presence of mineral ions, 2) the removal of
general mineralization inhibition, and 3) the refinement of local in-
hibition – each has a progressively refined and specialized role. Ions
such as calcium and phosphate are used in myriad key metabolic pro-
cesses, and are central to life itself. However, their abundance and
propensity to adversely precipitate as mineral requires a generalized
inhibition. Selective removal of such inhibition (“inhibiting the in-
hibitor”) to allow mineralization can be used to define the size, shape
and layout of an organism (from in utero through to adulthood). As part
of this process there is the third tier of mineralization regulation – the
fine interfacial enzyme-stenciling control that provides refinement for
mechanical resilience, metabolic responsiveness, morphological preci-
sion and sensitivity to loading, to name a few, that apparently can
distinguish life from death, and health from disease.
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