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KEY POINTS

� The improved phenotyping of inborn errors of metabolism and endocrinopathies is
increasingly revealing the extent of the pulmonary involvement in these systemic
disorders.

� Early recognition can enable potential disease modifying therapy to be initiated and pre-
vent needless investigation.

� Although particular diseases may predominately manifest as restrictive or obstructive lung
disease, often a combination of both exist.
INTRODUCTION

Advances in technology, methodology, and deep phenotyping are increasingly driving
the understanding of the pathologic basis of disease. The resultant improvements in
patient identification and treatment are in turn impacting survival and unmasking
new aspects of disease. This is especially true in endocrinology and inborn errors of
metabolism, where disease-modifying therapies continue to be developed. Inherent
to this evolving picture is the increasing awareness of the respiratory manifestations
of these rare diseases. This review updates clinicians on these manifestations, strat-
ifying diseases principally spirometerically; short sections on pulmonary hypertension
and diseases with a predisposition to recurrent pulmonary infection are also included.
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This division is, however, artificial with many diseases having multiple pathologic ef-
fects on respiration. Owing to considerations of space, this review does not cover
the impact of obesity.
OBSTRUCTIVE DISEASE

The endocrine and metabolic causes of obstructive airway disease are principally
owing to alterations of the upper airways, typically presenting as either stridor or
snoring with or without obstructive sleep apnea (OSA). The clinical hallmarks of these
diseases and the approach to their diagnosis is detailed in Table 1. Acute stridor is a
feature of some B vitamin deficiencies. In biotinidase deficiency, a recycling defect of
biotin (vitamin B7), a laryngeal spasm unresponsive to steroids but responsive within
hours to oral biotin supplementation, can occur.1–3 Stridor is also a feature of
Brown–Vialetto–Van Leadre (BVVL), a disorder of gastrointestinal riboflavin (vitamin
B2) uptake, owing to defects in the luminal B2 transporters RFTVT2 or RFTVT3.
Although the classical clinical triad suggestive of BVVL is sensorineural deafness,
bulbar palsy and respiratory compromise caused by muscular weakness,4,5 it is
now recognized that up to 50% of patients with BVVL presenting before the age of
3 years do so with stridor. Stridor has also been seen in a closely linked disorder, mul-
tiple acyl-coenzyme A dehydrogenase deficiency. Here the proteins, electron transfer
flavoprotein, and electron transfer flavoprotein ubiquinone oxidoreducatase for which
riboflavin is a precursor, accept the electrons generated by the flavin adenine
dinucleotide–linked dehydrogenases. Abnormalities in either protein will ultimately
also cause inhibition of the same fatty acid dehydrogenases as affected by BVVL. Un-
like in BVVL, only severe multiple acyl-coenzyme A dehydrogenase deficiency has
been linked with recurrent stridor,6 with it not seeming to occur in milder multiple
acyl-coenzyme A dehydrogenase deficiency variants.7 Acute laryngospasm is also a
symptom of hypocalcemia, whose main cause is hypoparathyroidism,8 which in just
under 10% of cases has a genetic basis.9 Although this condition can be isolated or
part of as syndrome, most typically the 22q11 microdeletion responsible for DiGeorge
syndrome, it has also be seen to be secondary to defects in mitochondrial energetics
such as Kearns–Sayre, MELAS [Mitochondrial encephalomyopathy, lactic acidosis,
and stroke-like episodes], and mitochondrial trifunctional protein deficiency.10–12

However, the majority of endocrine and metabolic upper airway problems result
from progressive anatomic changes. The archetypical examples are the lysosomal
storage disorders, where inherited deficiencies in the activity of the inherent catabolic
enzymes result in excessive substrate accumulation, which in turn trigger localized
and systemic inflammatory responses. This response is most prominently seen in
the mucopolysaccharidoses, a group of inherited conditions of glycosaminoglycan
(GAG) degradation.13 However, given their multilevel airway disease, they are consid-
ered in their own section in this article. Other lysosomal disorders resulting in upper
airway distortion include the non/minimally neurologically affected patients with Faber
disease. They generally suffer from progressive joint deformation and contractures,
subcutaneous nodules, and inflammatory granuloma formation,14 the latter occurring
anywhere in the respiratory tract15 and potentially causing extensive upper airway
obstruction.16 The respiratory hallmarks are a hoarse voice and respiratory insuffi-
ciency secondary to obstruction or interstitial pneumonitis. The pneumonitis of itself
leads to death in the third or fourth decade of life. The upper airway lesions have
been successfully surgically resected, but these lesions can reoccur.16

Soft tissue changes, especially tongue enlargement, is a feature of hypothyroidism,
although alteration in central respiratory drive, suppression of the hypercapnic



Table 1
Causes of obstructive lung disease

Disease Main Presenting Features Investigation

Biotindase Insidious onset of lethargy
hypotonia, seizures after 7 wk.
Hearing loss, marked dermatitis,
optic atrophy, developmental
delay

Urine organic acids
Acylcarnitines
Biotindase red cell assay

Brown–Vialetto–
Van– Leare

Progressive pontocerebellar palsy
and deafness. RFTV2 often also
have sensory ataxia followed by
distal weakness with or
without nystagmus

RFVT3—normally PC in infancy
with hypotonia

Both types/ rapidly progressive
bulbar palsy and respiratory
failure

Urine organic acids
Acylcarnitines genetics

Hypocalcemia syndromic:
1. DeGeorge type 1 1 2
2. CHARGE
3. Autoimmune

polyendocrine
syndrome type 1

4. Hypoparathyroidism,
sensorineural deafness
and renal disease (hdr)

5) Kenney–Caffey
syndrome type 1 1 2

6. Snajad–Sakati syndrome
7. Gracile bone dysplasia
Mitochondrial:
1. MELAS
2. Kearns–Sayre
3. Mitochondrial

trifunctional protein
Autosomal dominant

hypocalcemia:
Autosomal dominant
hypocalcemia type 1

Autosomal dominant
hypocalcemia type 2

Isolated
hypoparathyroidism

Congenital heart defects, thymic
hypoplasia, cleft palate,
parathyroid hypoplasia,
developmental delay, renal,
laryngotracheoesophageal and
skeletal abnormalities

Coloboma, heart anomaly,
choanal atresia, retardation,
genital and ear anomalies

Addison disease,
hypoparathyroidism, and
chronic mucocutaneous
candidiasis

Hypoparathyroidism,
sensorineural deafness, renal
dysplasia and occasional female
genitourinary dysplasia

Dwarfism, developmental delay
(NB normal type 2) cortical
thickening and medullary
stenosis of long bones

Intrauterine growth restriction at
birth, microcephaly, congenital
hypoparathyroidism, facial
dysmorphism, mild intellectual
delay

Perinatally lethal condition,
gracile bones with thin
diaphyses, premature closure of
basal cranial sutures, and
microphthalmia

Mitochondrial myopathy,
encephalopathy, lactic acidosis,
and stroke-like episodes, but
multisystem disease

Genetic analysis of
following genes,
except where stated:
DNA methylation
MPLA

CHD7 variants
AIRE
HDR
TBCE/FAM111A
TBCE
FAM111A

Mitochondrial DNA
analysis:
Most commonly mt
point mutations
3243A-G, 8993T-G

Mitochondrial DNA
analysis:
Acylcarntitines,
HADHA HADHB gene
analysis

CASR/GNA11
GCM2/PTH/SOX3

(continued on next page)
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Table 1
(continued )

Disease Main Presenting Features Investigation

Progressive external
ophthalmoplegia, pigmentary
retinopathy, and onset before
20 y of age, plus at least one of
the followings: heart block,
cerebellar symptoms, or cerebral
spinal fluid protein levels
of >100 mg/dL.

Neonatal/early onset hypotonia,
cardiomyopathy, liver
dysfunction, hypoketotic
hypoglycemia.

50% of patients have mild or
asymptomatic hypocalcemia;
about 50% have paresthesias,
carpopedal spasm, and seizures;
about 10% have hypercalciuria
with nephrocalcinosis or kidney
stones; >35% have ectopic and
basal ganglia calcifications

Farber disease Triad of subcutaneous nodules,
arthritis, and laryngeal
involvement

Hepatosplenomegaly

Acid ceramidase levels
ASAH1

Prader–Willi
syndrome

Neonatal hypotonia, facial
dysmorphism with bifrontal
narrowing then philtrum and
almond shaped palpebral
fissures, poor suck leading to
failure to thrive, decreased
responsiveness, small gentiles/
subsequent hyperphagia
developmental delay and short
stature.

Genetic first line
DNA methylation-

specific MLPA
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response,17 and diaphragmatic weakness18 also contribute to the multiple causes of
respiratory dysfunction. A meta-analysis suggested that up to 30% of patients with
overt clinical hypothyroidism have OSA,19 but the historical link with pleural effusions
is debated.19 It is to be noted that obstruction has also been noted to occur in neonatal
autoimmune hyperthyroidism owing to thyromegaly.20

Although the association of acromegaly and OSA is well established in adults,21

there is little evidence that it causes problems in childhood. However the relationship
of growth hormone supplementation in Prader–Willi syndrome (PWS) (see Table 1)
and sudden death has been questioned.20 Classically, the respiratory problems in
PWS include OSA, central sleep apnea, and hypoventilation. Sudden death in patients
with PWS has been long recognized and largely attributed to acute respiratory illness
in combination with these preexisting respiratory problems. Although the body mass
index standard deviation score has been found to correlate with OSA in children with
PWS, the PWS-related obesity alone does not explain the association with OSA. Com-
parison studies of polysomnography (PSG) with non-PWS obesity-matched controls
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showed that the PWS group had a significantly longer time with suboptimal oxyhemo-
globin concentrations.22 Poor upper airway tone, pharyngeal narrowing, micrognathia,
adenoid hyperplasia, and decreased respiratory muscle strength all contribute, along-
side an abnormal response to hypoxia and hypercapnia thought to be a result of hy-
pothalamic dysfunction. Growth hormone deficiency is common in PWS, with an
incidence of 40% to 100% reported. It is likely to contribute to the lower muscle
mass, increased adipose tissue, and short stature found in PWS. In November
2000, growth hormone therapy was licensed in the UK for the indication “improvement
of body composition and growth.”23 Growth hormone therapy is proposed to lead to
adenotonsillar hyperplasia, which may lead to worsening OSA. Metabolic demand in-
creases while on growth hormone therapy,23 causing increased oxygen demand and
leading to a relative state of hypoventilation. A preexisting decrease in hydration can
be reversed while on GHT; this state may lead to a temporary increase in volume load
and could also cause airway edema. All of these factors could contribute toward sud-
den death, especially in the context of an acute respiratory illness.
RESTRICTIVE DISEASE

The metabolic and endocrine causes of restrictive lung disease are principally caused
by interstitial lung disease and musculoskeletal disease (Table 2).

Interstitial Disease

Manymetabolic disorders can also manifest as interstitial lung disease. Indeed the Eu-
ropean Childhood interstitial lung disease24 and American24 classifications have long
recognized the potential for lysosomal storage disorders especially the sphingolipido-
ses to cause disease. However, it is becoming increasingly evident that, in addition to
the lysosomal diseases identified, defects in other cellular biochemical pathways,
such as amino acid transport and aminoacylation, can also result in diffuse chronic
interstitial involvement.
The major pathologic mechanism underlying most metabolic causes of interstitial

lung disease seems to be abnormal alveolar macrophage function. The presence of
high concentrations lipid laden macrophages,25 in the bronchoalveolar lavages of
sphingolipid metabolic disorders such as Gaucher,26,27 Niemann–Pick A, B, and
C,28 and animal models of lysosomal acid lipase29 is extensively documented. In these
disorders, it is the glycolipid accumulation within the macrophages and resultant inter-
ruption of normal intracellular vesicular cycling that result in the damaging proinflam-
matory cascades.30–32 A number of disorders—that is Niemann–Pick A, B, and C,
lysinuric protein intolerance, andmethionyl tRNA synthetase, may also give rise to pul-
monary alveolar proteinosis. In lysinuric protein intolerance, the alteration in intracel-
lular arginine concentration is thought to impair macrophage Toll-like receptor
function with resultant imbalance of proinflammatory and anti-inflammatory cyto-
kines.33 The mechanisms in methionyl tRNA synthetase are less well-defined, but
global translational repression is thought to lead to the macrophage inflammatory
response.34

Studies in lysinuric protein intolerance have shown infiltrative lung disease in
approximately 2/two-thirds of patients when examined with high-resolution computed
tomography (CT) scans.35,36 However, a great degree of variability in respiratory pre-
sentation exists, even within families carrying the samemutation.35 Thus, although pa-
tients can present with acute respiratory failure (1637 to 60%35), some can be
apparently clinically asymptomatic despite chronic radiologic changes.36 There is
extremely limited data on the efficacy of treatment, although the use of intravenous



Table 2
Causes of restrictive lung disease

Disease

Is Primary
Presentation
Pulmonary? Main Presenting Features

Pulmonary
Alveolar
Proteinosis
Seen Investigation

NPA/B Rarely Common features: hepatosplenomegaly, growth
restriction. and delayed bone age

Raised triglycerides, low cholesterol
Type A will typically have hypotonia and neurologic
regression from 6 mo

Yes Urine—oligosaccharides
Blood—oxysterols white
cell enzymology

Infantile-onset
lysosomal
acid lipase

No Worsening gastrointestinal function then liver
impairment <3 mo/ death 6–12 mo

Increasing hemophagocytic lymphohistiocytosis
phenotype on investigation with worsening
disease

Yes Blood—oxysterols
White cell enzymology

Niemann–Pick C No 1. Neonatal liver disease
2. Incidental splenomegaly
3. Progressive neurologic ataxia/vertical gaze palsy/

seizures and eventual neuroregression

Yes Blood—oxysterols
1 chitotriosidase
5 suggestive

Fibroblast—Phillipin
staining

Genetics

Lysinuric protein
intolerance

No Acute hyperammonemia
Chronic—failure to thrive, protein intolerance,
renal insufficiency, developmental delay,
occasional hepatosplenomegaly and
pancytopenia

Yes Urine/plasma amino
acid ratio

Blood—ammonia
(can be normal)

Methionyl tRNA
synthetase

Yes Multiorgan involvement with liver dysfunction
prominent, occasional lactic acidosis and
hyperammonemia

Yes Genetics

MPS 1 Yes, but mainly
obstructive

Coarse facies, otitis media, hepatosplenomegaly,
umbilical/inguinal hernias, dysostosis multiplex,
cervical spine instability potential neurologic
decline (Hurler), corneal clouding, joint stiffness,
valvular heart disease. Recurrent upper airway
symptoms- infections, rhinorrhea, snoring

No Urine—MPS screen
Blood—white cell
enzymology
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MPS 2 Yes, but mainly
obstructive

As in MPS1, but no corneal clouding No Urine—MPS screen
Blood—white cell

enzymology

Gaucher No Common features hepatosplenomegaly, anemia,
thrombocytopenia, acute painful crisis, failure to
thrive, horizontal saccade initiation failure with
progression to more severe oculomotor apraxia

No White cell enzymology

HPP No Perinatal from foreshortened/limb deformation,
caput memebanecum, osteogenic spurs in
midshaft, period apnea ulnas, fibula skeletal
hyopmineralization on radiographs

Infantile—Pc before 6 mo, poor feeding, failure to
thrive, hypotonia, rickets, with or without
increased intracranial pressure, blue sclera,
vitamin B6-dependant epilepsy, hypercalcemia
and hypercalciuria

Childhood PC >6 mo premature deciduous tooth
loss, rachiatic deformities of wrists, costocondrial
junction and genu varus/valgum, skeletal pain
and delayed walking. Marrow edema mimicking
osteomyelitis, craniosynostosis, characteristic
radiology

No Liver function –alkaline
phosphatase

Genetics ALPL

OI Type 1—non deforming autosomal dominant, blue
sclera

Type 2- severe perinatal lethal autosomal recessive
Type 3- severe progressive deformity autosomal

recessive
Type 4-moderate severity autosomal dominant

normal sclera
Type 5-calcification of interosseous

membranes � hypertrophic callus
NB hearing loss, dental involvement/joint

hypermobility, increased cardiac valvular disease
variable dependent on severity

No 80%–85% COL1A1
or COL1A2

(continued on next page)

E
n
d
o
crin

e
a
n
d
M
e
ta
b
o
lic

D
ise

a
se
s
in

C
h
ild

re
n

8
7



Table 2
(continued )

Disease

Is Primary
Presentation
Pulmonary? Main Presenting Features

Pulmonary
Alveolar
Proteinosis
Seen Investigation

Infantile-onset
Pompe disease

Possible
respiratory
distress

Typically Pc <6 mo with respiratory distress,
cardiomegaly, developmental delay, hypotonia,
poor feeding and weight gain

No White cell enzymology,
urinary Glc4,

Phosphomannomutase-2
deficiency—CDG

No Neonatal hypotonia, inverted nipples and unusual
subcutaneous fat pads, ataxia, mental retardation
apparent from later childhood while muscular
atrophy and hypogonadism is seen in later life

No Transferrin
isoelctrofocusing
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corticosteroids and whole lung lavages in established respiratory failure, was thought
to be ineffective in the French cohort.35 There is a single recorded heart–lung trans-
plant38 in a 3-year-old child with acute respiratory failure unresponsive to intravenous
corticosteroids and lavage.
In methionyl tRNA synthetase, a number of case series have emphasized its impact

on the lungs.39,40 The largest of these was a retrospective cohort of 29 patients the
median age of onset of respiratory symptoms was 2.5 months (range, 0.5–
72.0 months), with 26 patients presenting before 1 year of age. Fibrosis was present
in 19 of 28 patients (69%) who underwent lung biopsy.41 An initial CT scan was avail-
able for 17 patients (median age, 10 months) and showed intralobular septal thick-
ening (100%), ground glass opacities (94%), and consolidation (76%). In the 13
patients who had a repeat CT scan (median age, 10 years), the consolidation had
resolved although in 12 signs of fibrosis were present. The restrictive pattern on pul-
monary function testing mirrored this, whereas 15 of the 18 had a diffusing capacity of
the lung for carbon monoxide of less than 80% of the predicted value.41 Twenty-six
patients were treated with lavages, 14 with steroids, and 1 underwent transplantation,
with the latter showing no recurrence of pulmonary alveolar proteinosis 1 year after the
transplant. There was no overall correlation between outcome and any of the treat-
ment modalities. Twelve of the 29 patients died, the majority before 3 years of age;
survivors were aged between 1.1 and 24.9 years.
The sphingolipid disorders have varying degrees of lung involvement being near uni-

versal in Niemann–Pick B, where the leading causes of death are respiratory and liver
failure.42 Ninety percent of a prospective series of 54 pediatric and adult patients had
parenchymal changes on radiographs, which increased to 98% on CT scan.43 The CT
scans showed ground-glass opacities, interlobular septal thickening, and intralobular
lines, mainly in the lower zones.43 These changes, although not pathognomonic,44 are,
in the context of Niemann–Pick B, highly suggestive of pulmonary alveolar proteinosis.
Cysts, thought to be secondary to air trapping45 and even emphysematous
changes,46 have been described, but are rare.
Niemann–Pick C, a defect in lysosomal egress of unesterified cholesterol lipids,47

tends to have a milder respiratory phenotype. Although overall 95% of cases are
caused by defects in the NPC1 gene, those documented with severe lung manifesta-
tions have typically had defects in the NPC2 gene.48–50 These cases typically develop
respiratory failure within the first year of life,49 with ground glass changes on chest ra-
diographs and pulmonary alveolar proteinosis on autopsy.50

In the third of the sphingolipidoses, Gaucher’s disease, pulmonary and overall
severity have been correlated.51 Patients have traditionally been divided into 3 major
subgroups depending on the absence (type I) or presence (type II and III) of neurologic
symptoms.52 Although generally having milder visceral disease, the majority of
enzyme replacement therapy (ERT)-naive type I patients still had abnormalities in pul-
monary function, particularly a decrease in functional residual capacity and diffusing
capacity of the lung for carbon monoxide, which preceded radiologic changes.53 In
the pre-ERT era, even patients with type I Gaucher could develop respiratory failure
secondary to alveolar occlusion by Gaucher cells, most typically in splenectomized
patients.27,54 Autopsy findings also demonstrated Gaucher’s cell invasion of the septal
capillaries, fitting with reports of pulmonary hypertension.55 Although ERT has
decreased the degree of lung involvement even in those type 1 patients with severe
initial disease,56,57 in older patients, respiratory response may be minimal.51 Respira-
tory complications, although similar in the chronic neuropathic form (type III) tend to be
more prevalent58 and also include pulmonary haemorrhage.59 Although lavage60 and
even intrabronchial ERT have been tried, the combination of ERT and substrate
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reduction may be the best therapy for improving pulmonary function.61 Lung trans-
plantation has been successfully undertaken both in the pediatric and adult
populations.25,62

Although pulmonary involvement has been seen in Wolmans disease, historically
these patients presented with growth failure and liver dysfunction within the 1st
months of life and typically died of ensuing liver failure by 4 months.63 With the advent
of ERT the respiratory complications have become more overt. These patients suffer
from an interstitial lung disease,64 which may not be surprising given the disruption in
surfactant production seen in animal models.65

Within mucopolysaccharidosis (MPS), interstitial disease is predominately seen in
neonates, before commencement of ERT, with both MPS1 (Hurler syndrome)66 and
MPS II (Hunter syndrome).67 These patients all showed glycogen deposition on lung
biopsy, leading to an initial misdiagnosis of pulmonary interstitial glycogenosis. How-
ever, interstitial lung disease has also been seen in patients who should, theoretically,
have been provided with adequate replacement enzyme.68,69 Although in both the
lung disease was postulated to be multifactorial, the former responded to increased
enzyme provision, whereas the latter responded to steroids after spinal surgery.
Although type 2 diabetes has been seen of itself, even when weight gain has been

accounted for, to be a risk factor for restrictive lung disease in adults,70 comparable
studies in pediatrics have not yet been performed.

Musculoskeletal Causes

Although potentially all causes of impaired respiratory muscle function can cause a
degree of restrictive lung disease, it is beyond the capacities of this review to expand
on the multiple genetic defects that decrease the mitochondrial energy production
interfering with either respiratory drive or muscle function. We concentrate on 3 disor-
ders that typify this form of restriction.
Infantile-onset Pompe disease is an autosomal recessive lysosomal storage disor-

der is caused by a deficiency of the enzyme acid a-glucosidase.71 The resulting accu-
mulation of glycogen in lysosomes triggers inflammatory pathologic cascades72 that
principally affect skeletal and cardiac muscles. Patients typically present within the
first few months of life, with a combination of cardiorespiratory insufficiency, hypoto-
nia, and failure to thrive.73,74 Untreated patients follow a rapid, progressive, and ulti-
mately fatal course, dying typically between 7 and 9 months of age from
cardiorespiratory failure.73 The advent of ERT has markedly changed the overall sur-
vival; however, data from the UK and Germany suggest that ventilator-free survival
was at best 40% in those treated on standard doses, because respiratory muscle fail-
ure still results in insufficiency in the majority of patients.75,76

Hypophosphatasia (HPP) is a rare disorder of bone mineralization caused by muta-
tion in the ALPL gene, which codes for tissue-nonspecific alkaline phosphatase.
Mineralization of the tissues is controlled by inhibitor of mineralization, inorganic pyro-
phosphate, which is deactivated by alkaline phosphatase dephosphorylation. In HPP,
a low alkaline phosphatase concentration causes undermineralization of the skeleton
and severe rickets. HPP is a heterogenous disorder with the most severe form, peri-
natal HPP, presenting with severe hypomineralization of the fetal skeleton; the moder-
ately severe form, infantile HPP, presents within 6 months of age. Infants with perinatal
and infantile HPP manifest with varying degree of respiratory failure secondary to
undermineralized thoracic cage, hypoplastic lungs and hypotonia requiring respiratory
support. Until recently, perinatal HPP was fatal with 100% mortality.77 ERT with asfo-
tase alfa significantly improves survival compared with historic controls and this result
is secondary to improved mineralization of the thoracic skeleton, allowing these
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infants to survive with respiratory support.78 Requirements for respiratory support are
variable, with some children requiring it until 4 years of age.79 A multidisciplinary team
consisting of an intensivist, pulmonologist, physical rehabilitation therapist, and meta-
bolic bone disease specialist is required for the management of neonates and infants
with HPP manifesting with respiratory complications.80 If prolonged respiratory sup-
port is predicted, a tracheostomy should be considered, and long-term home ventila-
tion should be planned. Tracheobronchomalacia can complicate ventilatory
requirements and duration and, therefore, if clinically indicated, tracheobronchoscopy
should be performed.
Osteogenesis imperfecta (OI) refers to a group of disorders where abnormalities in

collagen formation and/or deposition result in defective bone matrix formation. Most
common forms of OI, types I to IV, are caused by autosomal dominant mutations in
the COL1A1 and COL1A2 genes coding for type 1 collagen. The nosology of OI
has, however, expanded, with multiple genes now identified which can cause auto-
somal dominant and autosomal recessive OIs.81 OI clinically manifests with frequent
nontraumatic fractures; whereas moderate to severe OI presents with limb defor-
mities, thoracic deformities from rib and vertebral fractures, and hypoplastic lungs.
Indeed, the most common cause of death is secondary to pulmonary diseases,82

which may in part reflect the abundance of type 1 collagen in the connective tissues
surrounding the alveoli structures. The risk of pulmonary disease is directly related
to the severity of OI; neonates with severe OI (type III and autosomal recessive) may
develop respiratory failure requiring ventilatory support from chest wall deformities
and pulmonary hypoplasia.83 In addition, kyphoscoliosis from vertebral collapses
and rib deformities, pectus carinatum, decreased diaphragmatic movement (abdom-
inal contents pressing on diaphragm), airway distortions, and restrictive pulmonary
abnormalities can in combination significantly decrease alveolar ventilation.84 Further-
more, ineffective clearance of secretion and infections can lead to bronchiectasis.
Finally, soft skull and platybasia can cause basilar invagination that, in severe cases,
may disturb respiratory function secondary to brain stem compression and hydro-
cephalus. There are reports of ventilatory requirements for this complication.85

Although there is no specific disease-modifying therapy for OI type IV, bisphospho-
nates have been shown to prevent vertebral fractures, decrease the frequency of rib
fractures, and prevent worsening of chest deformities, therefore contributing to
improving respiratory function. Physical rehabilitation assists in positioning and effec-
tive clearance of secretions. Some children may require spinal surgeries for the
correction of kyphoscoliosis, which also contributes to improving respiratory function.
Yearly monitoring with lung function testing, imaging, and pulse oximetry can help in
screening for respiratory complications.84 In those infants with severe OI requiring
ventilatory support, a global view must be taken because they normally also have
developmental delay, neurologic complications, and multiple fractures, and are
completely dependent on care givers. Therefore, the ethics of treatment, especially
long-term ventilation, should be considered carefully, and palliative care should be
offered after a discussion with the family.
It is to be noted that dysostosis multiplex like skeletal changes have been seen in the

congenital disorders of glycosylation (CDGs).86 These are a rapidly evolving field of
disorders where defects in the normal post-translational glycosylation processes
occurring in the endoplasmic reticulum and Golgi complex result in aberrant tertiary
protein structure. By far the best described is phosphomannomutase-2 deficiency,
which has been seen to have very similar thoracic changes to those described in
the MPSs. This multisystem disease presents normally in infancy with hypotonia,
inverted nipples, and unusual subcutaneous fat pads. However, patients often
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develop ataxia–mental retardation in childhood and muscular atrophy and hypogo-
nadism in later life.87 Diagnosis of the CDGs has been based on the glycosylation
pattern of transferrin with differing glycosylation patterns occurring in differing groups
of CDGs with these patterns being recognized using electrophoretic analysis. It is to
be noted that this transferrin isoelectofocusing can give false-negative results in the
first 3 months of life.87

Other causes of restrictive lung disease include disorders of thyroid transcription
factor TITF1/NKX2.1, which is required for pulmonary development, with affected in-
fants suffering from pulmonary hypoplasia.88
MIXED AIRWAY DISEASE
Mucopolysaccharidosis

Inherited defects in the catabolic pathways of the GAGs heparan, dermatan, and ker-
atan sulfate have all been associated with obstructive symptoms.13,89 At a cellular
level, substrate accumulation results in a localized proinflammatory response.90,91

Although the major impact of heparan sulfate is seen on neurologic tissue,92 it is the
accumulation of dermatan93,94 and keratan moieties95 that have the greatest effect
on extracellular matrix structure and airway growth and caliber.
The impact of MPS on airway function can be seen from the fact that, despite the

advances in diagnostics and therapeutics, respiratory disease remains the leading
cause of morbidity and mortality in MPS and is also the most prominent cause of
patient-perceived impaired quality of life.96 Airway obstruction can occur in both the
upper and lower airways in MPSs.13,97,98 The principle cause of the obstruction in
MPS I, II, VI, and VII is the multilevel GAG deposition, which in the upper airway leads
to nasal mucosal hypertrophy, macroglossia, and adenotonsillar hypertrophy.99–101

Registry data show that 80% of patients with MPS I demonstrate OSA before the
age of 2 years.102 Despite disease-modifying therapies such as ERT and bone marrow
transplantation, 84% of patients with MPS I still undergo adenotonsillectomy.102 GAG
deposition can also result in enlarged and redundant supraglottic tissues, especially in
MPS II, where prolapse into the laryngeal inlet can result in severe compromise.103,104

Although GAG accumulation leads to overt narrowing of the upper airways, this hy-
pertrophy is often compounded by local inflammation and weakness resulting in laryng-
opharyngeal malacic changes as well as subglottic laryngotracheomalacia.105,106 This
combination of GAG accumulation and malacial changes leads to multilevel airway
obstruction.107 With the exception of patients with MPS III, these intrinsic upper airway
changes are further complicated by limited mouth opening.107 The impairment of mouth
opening is secondary to a combination of temporomandibular joint dysfunction108 and/
or overgrowth of the mandibular coronoid processes.109

GAG deposition and inflammation also occur in the lower airway,110–112 with airway
narrowing resulting frommalacia seen in all the MPS subtypes.106,113,114 However, the
most severe tracheal abnormalities are seen in MPS IV (tortuosity and “buckling”).115

This exaggerated response is thought to be due to abnormal cartilage metabolism and
imbalances between the relatively normal longitudinal growth of the trachea and the
severely restricted thoracic cage growth. Indeed, in MPS IV, the tracheal narrowing
has been documented as early as 2 years of age. Although the study was cross-
sectional, all patients over 15 years of age had a decrease of at least 50% in tracheal
caliber, suggesting progression with age.115

The combination of chest wall deformities and hepatosplenomegaly115 does make a
significant contribution to the respiratory impact of the MPSs (Table 3). Chest wall de-
formities are part of the general dysostosis multiplex seen in MPS. Particularly the



Table 3
The respiratory impact of the mucopolysaccharidoses

MPS Name and Enzyme Defect

Main
GAGs on
Urine
Screening Clinical Symptoms

Respiratory
Manifestations

Restrictive
Disease

Upper
Airway

Lower
Airway

I Hurler (H)
Hurler-Scheie (HS) Scheie (S)
Iduronidase deficiency

DS HS Coarse facies, otitis media,
hepatosplenomegaly, umbilical/
inguinal hernias, dysostosis multiplex,
cervical spine instability potential
neurologic decline (Hurler), corneal
clouding, joint stiffness, valvular heart
disease

111 11 11

II Hunter
Iduronate—I-sulphatase deficiency

DS HS As MPS1 but no corneal clouding 111 11 1

II Sanfilippo (A–D)
A) Heparan N-sulfatase
B) Alpha-N-acetylglucosaminidase
C) Acetyl-coenzyme A:alpha-
glucosaminide acetyltransferase

D) N-acetylglucosamine-6-sulfate

HS Stage 1—Initially asymptomatic/mild
developmental delay

Stage 2—hyperactivity and grossly
impaired sleep (mainly neurologic)

Stage 3—neurologic decline gastrostomy
and bed bound

�/1
Otitis media

common

�/1 �/1

III Morquio (A and B)
A) N-acetylgalactosamine 6-sulfatase
B) Beta-galactosidase

KS, CS Severe skeletal deformity cervical spine
instability genu valgum, pectus
carinatum and kyphoscoliosis? short
stature, valvular heart disease, corneal
clouding, joint hypermobility

11 111 111

VI Maroteaux–Lamy
N-acetylgalactosamine 4-sulfatase

DS, CS As per MPS 1, but with a greater chance
of cervical spine instability but without/
minimal neurologic compromise

111 11 11

VII Sly
Beta-glucuronidase

DS, HS, CS Hydrops fetalis and as per MPS I 11 11 11
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pectus carinatum, kyphoscoliosis and rib abnormalities—both shape (oar) and angu-
lation (more horizontal)—as well as induration of the costovertebral complex and the
elevation of the diaphragms all contribute to the reduction in pulmonary function.13,115

Chest wall pathology is most closely tied to stature and is thus most prevalent in MPS
IV, although it is also seen in the more severe phenotypes of MPS I, II, and VI.13 Finally,
MPS I, IV, and VI are associated with atlantoaxial subluxation and odontoid hypoplasia
that may result in spinal cord compression116 that, if involving the C3 to C5 nerve
roots, can decrease diaphragmatic function and ventilation.13

A comprehensive evaluation of respiratory function should be attempted in all pa-
tients with MPS, with spirometry, PSG, flexible nasoendoscopy, and imaging all
contributing to overall management and perioperative safety.107,117 Although central
apnoeas have been noted with progressive neurologic involvement,117 the common-
est form of sleep disordered breathing found on PSG is OSA. The limited published
PSG data suggest that OSA is present in 70% to 100% of patients with MPS I, II,
and VI, although most prominently in MPS I and II.118–121 Although nasoendoscopy
is a very useful tool to access laryngeal involvement and inspiratory supraglottic
collapse, this tool can be challenging in the young and those with neurocognitive
impairment.122 Three-dimensional CT reconstructions of the large airways can help
with preoperative planning, with reported alterations in anesthetic decision making
in more than 20% of cases.105

Disease Associated with Recurrent Respiratory Infections

A number of both endocrine and metabolic disorders are associated with increased
risk of respiratory infections. The best example is the autosomal recessive form of
pseudohypoaldosteronism owing to defective action of the epithelial sodium channel,
whose 3 subunits are encoded by SCNN1A, SCNN1B, and SCNN1G. Alpha subunit
variants have been associated chronic disease and are reportedly clinically indistin-
guishable from cystic fibrosis.123,124 Impaired neutrophil function in GSD 1B and
G6PC3 (severe congenital neutropenia type 4) also predispose to increased respira-
tory infections. Recurrent infection is also a hallmark of immune dysregulation, poly-
endocrinopathy, enteropathy, X-linked syndrome and immune dysregulation,
polyendocrinopathy, enteropathy, X-linked–like disorders, with up to 30% of affected
patients having recurrent pulmonary disease.125 The most significant metabolic
impairment of the immunologic function, however, is seen in patients with adenosine
deaminase 1, which in its most severe form causes severe combined immunodefi-
ciency. The recurrent opportunistic infections that arise from decreased T and B cells
result from the build-up of adenosine and its derivatives.126 By the time of diagnosis,
these patients often have chronic respiratory insufficiency and autoimmune phenom-
ena, including cytopenias and antithyroid antibodies. Allergies and an elevated serum
IgE are often present.127
PULMONARY HYPERTENSION

Although in the World Health Organization classification of pulmonary hypertension,
metabolic disease falls within category 5, the multifactorial subclassification,128 the
commonest metabolic causes are due to mitochondrial dysfunction. It is seen in
both defects predominately affecting mitochondrial energetics such as LIPT1,129

Tmem70,130 and NFU1,131 and in those affecting more diverse mitochondrial functions
such as the glycine cleavage system (nonketotic hyperglycinemia),132 DNA transcrip-
tion (mitochondrial seryl-tRNA synthetase),133 or amino acid transport (SLC25A26).134
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Typically, the disorders predominately affecting energetics present in the neonatal
period, are multisystemic in nature and have a prominent neurologic component.
Outside the neonatal period, metabolic disorders resulting in pulmonary hyperten-

sion are rare. Historically, Gaucher’s disease was the commonest cause with pulmo-
nary hypertension occurring in 5% of splenectomized patients.54,135 However, the
advent of ERT and the resultant reduction in splenectomies, seems to have resolved
this.
Intracellular processing defects in cobalamin (vitamin B12), typically cobalamin C

has been seen to present with isolated pulmonary hypertension in both children136

and adults.137 It has, however, recently also been associated with diffuse lung paren-
chymal disease.138 It seems most likely that the microangiopathy associated with the
high levels of homocysteine and organic acids is the basis of the pulmonary hyperten-
sion. The typical presentation of cobalamin C is with developmental delay and failure
to thrive from poor enteral tolerance in the first 6 months of life.139

CLINICAL CARE POINTS

� The normal range of biochemical investigations especially those used in the
investigation of biochemical disease are not as well established as more classical
normal ranges andmore prone to sampling errors. Thus, if is there is disparity be-
tween the clinical and biochemical phenotype further discussion with the refer-
ence laboratory should be sought.

� While next generation sequencing is revolutionising medicine, given the number
of VUS (variants of unknown significance) generated in panel testing, functional
investigation where possible as outlined above is still the authors first line sug-
gestion currently.
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